
Abstract UIs as a long-term solution for non-visual access to GUIs

Kris Van Hees, Jan Engelen

Katholieke Universiteit Leuven
Department of Electrical Engineering – ESAT – SCD – DocArch

Kasteelpark Arenberg 10
B-3001 Heverlee-Leuven

Belgium
kris@alchar.org, jan@docarch.be

Abstract

Various approaches to providing blind users with access to graphical user interfaces have been researched
extensively in the past 15 years. While graphical user interfaces keep evolving, accessibility is still facing many
obstacles that stem from the fact that desktop environments and applications are usually not designed with
accessibility in mind. Existing screen readers on MS Windows and X Windows are adequate as short-term
solutions, although they generally do not provide access to any arbitrarily chosen application. The higher degree of
freedom within the X Windows system further complicates the problem. This paper proposes a long-term solution
based on abstract user interface descriptions. Building upon past and current research into user interface description
languages, this approach is not only promising for providing blind users with access to graphical user interfaces. It
also promotes the “Design-for-All” principle by decoupling presentation and application logic.

1 Introduction

The introduction of graphical user interfaces (GUIs) caused quite a concern within the community of blind users,
due to the challenge of providing access to this inherently visual interface (Boyd, Boyd & Vanderheiden, 1990).
Until then, blind users gained access to text-based user interfaces by means of screen readers that were capable of
inspecting the screen. Since all presented data was pure text, rendering the contents of the interface was relatively
easy. GUIs offer a higher degree of flexibility, introducing a wider variety of interaction objects. Amongst all
windowing environments, MS Windows has been quite popular in the workplace and at home, and has therefore
received quite some attention in view of screen reader development. The relative consistency of the user interface
and the interaction objects simplifies the problem. The availability of support for MS Windows has also caused
somewhat of a comfort zone.

With the increase in popularity of X Windows-based systems in work and home environments, an additional degree
of complexity has emerged. Application developers have access to a whole range of graphical toolkits, such as
Athena, GTK, Qt, … While this promotes flexibility and the ability to integrate closely with any of the commonly
used desktop environments, it complicates the work needed to provide accessibility. This situation is further
complicated by the fact that it is perfectly possible (and often desirable) to run applications developed against a
given toolkit in a desktop environment that was developed using a different toolkit. Screen readers therefore cannot
depend on specific implementation details.

Past research has indicated that abstracting the user interface offers a high degree of flexibility in rendering for
various output modalities. Providing blind users with access to a GUI typically involves providing an auditory
and/or tactile representation. It is therefore a good match for using abstract user interface descriptions (AUI).
Current approaches used both on MS Windows and X Windows use a combination of graphical toolkit hooks,
queries to the application and desktop objects, and scripting to provide accessibility (Weber & Mager, 1996).
Unfortunately, this is leading to an “opt-in” situation where applications must explicitly be supported. The proposed
approach using an AUI description enables the screen reader to operate on a toolkit-independent definition. It also
allows for an implementation as a non-visual rendering agent for the user interface, equivalent to the graphical
rendering agents that provide the visual representation.

mailto:kris@alchar.org

The remainder of this paper first presents related work on GUI accessibility. The third section focuses on using
AUIs at the core of a screen reader, while the fourth section compares the proposed approach with past and current
efforts. The fifth section concludes this paper with a description of future work.

2 Related work

Much research has been conducted within the realm of accessibility of GUIs on Unix systems. Mynatt and Weber
describe two early approaches: Mercator and GUIB (Mynatt & Weber, 1994). The Mercator project was a research
effort at the Georgia Institute of Technology, replacing the GUI with a hierarchical auditory interface. Aside from
speech output, it also used short sound fragments to convey iconic information to the user. The GUIB project was a
cooperative effort between six European countries, translating the screen contents into a tactile representation.

A more general description of the common approaches towards GUI accessibility can be found in (Gunzenhäuser &
Weber, 1994). This early paper also identifies four design issues that are common to non-visual access to GUIs.

The Gnome Accessibility Project aims to provide accessibility to a wide range of disability groups (Haneman &
Mulcahy, 2002). The Gnopernicus screen reader lies at the core of the support for blind users, and is currently still
under development.

User interfaces are a very important topic within the realm of Human-Computer Interaction. For the purposes of this
paper, the UsiXML work done at the Belgian Laboratory of Computer-Human Interaction (BCHI) at the Université
Catholique de Louvain is of great importance (Vanderdonckt et al., 2004). The ability to abstract the user interface
of applications lies at the core of the methods proposed in this paper.

The similarity between application user interfaces and World Wide Web forms is an important driver as well.
Research into specific obstacles that blind user encounter with GUIs (Barnicle, 2000) shows results that are
consistent with similar research into web accessibility obstacles (Theofanos & Redish, 2003) and (Pontelli et al.,
2002).

Various research projects have investigated the usability of alternative interfaces. Two notable projects are the
“virtual sound wall” at the Oldenburg R&D-Institute for Informatics Tools and Systems (Donker, Klante & Gorny,
2002), and the performance analysis of multi-modal interfaces presented in (Vitense, Jacko & Emery, 2002). The
rather high cost of the environments involved is a concern, because an average user will typically not be able to
afford such sophisticated devices.

The “Fruit” system described in (Kawai, Aida & Saito, 1996) addresses the issue of user interface accessibility as
well. This system uses an abstract widget toolkit rather than an AUI description. The application is still written as if
a real widget toolkit is being used, while the actual presentation of the user interface is deferred to a device-specific
rendering component. As a result, synchronized presentation in multiple modalities is not part of the design, and no
features are present to provide accessibility at the windowing environment level.

Another interesting research has been conducted in the Visualisation and Interactive Systems Group of the
University of Stuttgart (Rose, Stegmaier, Reina, Weiskopf & Ertl, 2002). Interposing libraries are used to replace
the presentation of a user interface. While this is not considered to be a good approach for providing accessibility, it
does present an elegant solution for a non-invasive adaptation of a user interface in order to capture widget toolkit
function calls for testing purposes. It may also provide a facility to enable legacy applications to use improved or
adapted versions of a given user interface toolkit.

Past and current research has resulted in a wide variety of user interface description languages. Many of these are
XML-based, and an important subset has been reviewed in (Souchon & Vanderdonckt, 2003). From a universal
access and “Design-for-All” perspectives, a comparison was made between four candidate languages in (Trewin,
Zimmermann & Vanderheiden, 2003): UIML, XIML, Xforms, and AIAP.

3 AUIs and non-visual access to GUIs

Separating presentation and application logic has been a well-known development paradigm for a long time.
Abstract user interfaces (AUIs) take this one step further by eliminating device-specific influences. Visualisation is
left to graphical toolkit specific components, generated either programmatically from the AUI, or dynamically by
interpreting the AUI at runtime.

3.1 Core of the accessibility solution

In (Edwards, Mynatt & Stockton, 1994) the importance of providing non-visual access to GUIs was placed in direct
contrast to providing access to the graphical screen, setting the stage for using alternative representations of the
environment rather than trying to interpret the graphical image of windows. This approach implies a decoupling of
the user interface from the visual representation, while retaining the interaction semantics. Under the assumption
that all applications are developed using a single standard toolkit, it would be sufficient to provide support for screen
readers in that one toolkit. Unfortunately, that assumption is generally incorrect. X Windows does not imply the
use of any specific graphical toolkit, and it is in fact quite common for users to simultaneously be using applications
built upon different ones.

Figure 1: X Windows session showing the simultaneous use of multiple graphical toolkits

Figure 1 shows a fairly typical session on a Unix system, displaying Firefox, Xfig, J-Pilot and GAIM. Firefox and
J-Pilot are built upon GTK 1.2, Xfig upon the Athena Widget Set, and GAIM upon GTK 2.0. The bottom of the
figure also shows the FVWM button bar. The “Look & Feel” of the graphical interaction objects is quite different,
yet sighted users intuitively know how to handle them. All menu bars essentially work the same way, regardless of
what they look like. This supports the concept of decoupling presentation and semantics, and lies at the foundation
of abstracting the user interface.

AUIs are most commonly used as part of the user interface development process, yielding a final user interface in an
appropriate format for the output modality of choice. For web forms this would typically be HTML, while
applications may require Java or C source code. This constitutes a compile-time interpretation of the AUI. In order
to provide blind users with a non-visual representation, runtime interpretation must also be supported. For the
purpose of this paper, the assumption is made that visual rendering of the AUI will take place at runtime as well.
While this is not strictly a requirement for the proposed approach, it does greatly simplify the discussion.

Figure 2: Abstracting the user interface: schematic overview

Figure 2 explains how non-visual access to GUIs can be provided based on abstract user interfaces. The
applications are envisioned to have been developed using any available tools, providing an AUI definition in a
standard user interface definition language, e.g. UsiXML (Vanderdonckt et al., 2004). The visualisation of the GUI
is delegated to widget toolkit specific AUI interpreters, while an alternative AUI interpreter handles the non-visual
presentation: the screen reader. Note that for this approach to be successful, the AUI must be capable of
representing both data and a description of how to present that data, as suggested in (Trewin, Zimmermann &
Vanderheiden, 2003).

3.2 HCI issues for non-visual presentations of GUIs

Rendering of the interface is only one aspect of a successful accessibility solution. Mynatt and Weber discuss four
important HCI design issues that need to be addressed as part of any non-visual presentation of GUIs (Mynatt &
Weber, 1994):

• Coherence between visual and non-visual interfaces
Collaboration between sighted and blind users requires coherence between the visual and non-visual
presentations of the user interface. The mental model of how to interact with an application must be
substantially similar to both user groups to allow clear communication about how to accomplish a specific
goal. Any user should also be able to observe the actions of another, regardless of what interface is being
used by either user.

The use of AUI interpreters ensures coherence between the presentations because a single source provides
the description of the user interface, and the data presented in it. Provided that user interactions are
appropriately reflects in the AUI, coherence is guaranteed.

• Exploration in a non-visual interface
Non-visual modalities (auditory and tactile) are limited in their ability to provide information to the user in
part due to their largely serial nature, whereas a visual user interface can provide information in parallel in
a very efficient way. A screen reader implementation must provide specific non-visual mechanisms to
explore the non-visual interface. Given that the GUI is capable of providing information by means of
spatial properties of user interface elements (often beyond the scope of a single application), non-visual
alternatives must also be provided.

Within the context of the proposed approach, this means providing access to the application GUIs is not
sufficient. Support for the actual windowing environment must also be provided, so potentially important
spatial information is not left inaccessible. The screen reader must expose an interaction mode that allows
the user to explore the user interface of an application without directly affecting it. This is often called the
“review” mode in the screen reader.

• Conveying graphical information in a non-visual interface
The inherently graphical nature of GUIs commonly leads to presenting information in a strictly visual way:
icons, object attributes, appearance, … A non-visual presentation must be able to convey relevant aspects
of the information in an alternative format.

Abstracting the user interface into an AUI description implies that visualisation is delegated to AUI
interpreters. The presentation of information can therefore no longer be inherently graphical. The non-
visual AUI interpreter will render the information in a modality appropriate manner.

• Interaction in a non-visual interface
Interaction in a GUI is often based on visual idioms (clicking buttons, moving sliders, dragging objects, …)
whereas a blind user requires specific non-visual forms of interaction.

It is the responsibility of the screen reader to provide alternative modes of interaction that can be translated
into their equivalent visual counterparts. The abstraction of the user interface is therefore not only
responsible for the presentation aspect, but also for user input (where needed). An example of this
functionality would be translating specific key combinations into mouse operations.

A fifth design issue is provided in (Gunzenhäuser & Weber, 1994):

• Ease of learning
The introduction of non-visual access to GUIs should not be a major obstacle for blind users. The success
of the GUI concept depends in part on the intuitive nature of the environment, and on the fact that users can
share knowledge easily. Ease of learning can be accomplished by ensuring that the non-visual user
interface is sufficiently intuitive to its target group, and that sighted and blind users can share the same
mental model of interaction semantics.

The underlying concept for all five HCI design issues is related to how blind users interact best with a computer
system. It is therefore a priority for the proposed work to involve the target audience at all stages of research and
development.

3.3 Advanced aspects of non-visual access based on AUIs

Any solution for non-visual access to GUIs faces obstacles. Some are implied by the chosen approach, while others
are related to the very problem that is being worked on. While a comprehensive list of identified issues is quite
lengthy, three important examples illustrate the overall complexity.

3.3.1 Dynamic user interfaces

It is common for user interfaces to contain elements that are somewhat dynamic in nature. Interaction objects may
not always be applicable, and are often greyed out to indicate this attribute. This does not alter the composition of
the presentation, and therefore does not directly impact non-visual access.

A more disruptive feature involves truly dynamic updates in the user interface. A prime example is a “File” menu
on a menubar that displays a list of the last 5 or 10 accessed files. The exact content (or even size) of the menu
cannot be determined ahead of time. A possible solution may be the implementation of a feature in the AUI that
specifies that this specific content must be queried from an outside source (the application itself). Alternatively,
providing a facility for dynamic updates to the AUI description would provide a generic solution to this type of
problems.

User interfaces are generally described in an XML-compliant language, providing for a natural hierarchical
structure. Allowing the application to update this hierarchy by adding, removing, and updating parts of it ensures
that dynamic user interface changes can be supported. The AUI interpreters will be able to pick up these changes
and render the new presentations.

3.3.2 Legacy applications

The adoption of AUI-based application development is still a fairly slow moving target. A successful screen reader
implementation will therefore be faced with any number of legacy applications that were developed with
programmatically defined user interfaces. Although the development of a fully featured, commercial grade screen
reader is far beyond the scope of the work proposed in this paper, support for legacy applications will be
investigated. Reverse engineering of legacy user interfaces is possible using techniques developed as part of the
UsiXML project (Vanderdonckt et al., 2004), and is conceptually equivalent with existing screen reader technology.

3.3.3 So-called “Creative Programming”

By far the biggest obstacle in providing non-visual access to GUIs is “Creative Programming.” The flexibility of X
Windows empowers software developers to implement very complex user interfaces. In its worst form, a developer
may implement his own graphical toolkit. Alternatively, an existing toolkit may be extended with non-compliant
widgets that defy heuristics. Creative minds have been known to implement buttons in dialog boxes that “run away”
from the mouse pointer once it is within a certain distance.

In summary, it is not feasible to expect a screen reader to be capable of providing non-visual access to each and
every application.

4 Comparison with past and current approaches

Two notable past approaches to providing non-visual access to GUIs are described in (Mynatt & Weber, 1994).
Mercator replaces the spatial graphical display with a hierarchical auditory interface. A speech synthesis system is
added to the standard desktop configuration, and both speech and sound cues are used to convey information to the
user. Capturing X-protocol communications and querying toolkit objects, while using the fact that many features of
GUIs are related to limitations of the medium, construct an off-screen model. Overlapping windows and clipping
occur due to the screen size restrictions, and can therefore be avoided for non-visual access. With the emergence of
higher-level graphical toolkits, the capturing of the user interface at the X toolkit level is no longer sufficient. The
proposed approach addresses this by operating on an AUI level, independent from the concrete visualisation.

GUIB translates the screen contents into a tactile presentation, retaining spatial organization. A matrix of Braille
cells with touch-sensors is used as primary input and output modality, augmented with sound. A virtual screen copy
describes the contents of the screen on a lexical level, whereas an off-screen model is used to capture the syntactical
structure of the GUI. Because GUIB represents the screen as-is using a 25 by 80 Braille matrix (200 by 160 dots),
minimal work is required to transform the hierarchical off-screen model into textual output. While the 1994 paper
describes that this was sufficient to represent 640 by 480 pixel screens, current graphical screen technology far
surpasses that resolution. Expanding the Braille cell matrix seems impractical, and thereby imposes a limitation to
this approach. Retaining the spatial properties of user interfaces is not directly possible with an AUI-based screen
reader, and providing facilities for querying the visual rendering agents is planned.

The Archimedes project at the University of Hawaii (formerly at Stanford University) employs a bottom-up
approach, capturing an actual image of the graphical screen, and analysing it (Scott & Gingras, 2001). By means of
image and optical character recognition techniques, augmented with pattern matching, the image is transformed into
an off-screen model that ties into the Total Access System architecture. This system has limited use in an
environment where multiple graphical toolkits are available.

An actively developed solution to providing non-visual access to GUIs is the Gnopernicus screen reader, as part of
the Gnome Accessibility Architecture (Haneman & Mulcahy, 2002). It supports both speech and Braille output, and
aims to provide access to all GTK+2 and Java applications. Figure 3 provides a schematic overview of the Gnome
Accessibility Architecture. The sample applications listed at the top of the figure are developed against an
accessibility-aware toolkit: the “Access API” for OpenOffice, the “Java Accessibility API” for Java applications,
and the “Accessibility ToolKit” for Mozilla and GTK+ applications. Toolkit-specific accessibility bridges provide a
standardised interface to the “Assistive Technology – Service Provider Interface”. This component is toolkit
independent, and allows Gnopernicus to query and interact with GUI interaction objects.

Figure 3: The Gnome Accessibility Architecture: schematic overview

The Gnome Accessibility Architecture is built around the AT-SPI layer, requiring graphical toolkits to implement
support for this standard interface. All currently supported toolkits require the application developer to explicitly
call functions to provide information that can be queried by assistive technologies providers, such as Gnopernicus.
In a posting to the Gnome Accessibility mailing list (July 20th, 2004), Peter Korn stated that Gnome is taking the
approach that applications must “opt-in” to accessibility. Unless software does that, it will not work with the screen
reader. While the access solution proposed in this paper implies the adoption of AUIs, thereby imposing somewhat
of a limitation on supported applications, including techniques to appropriately handle legacy applications is planned
because enforcing a specific set of applications upon the users is contradictory to trying to provide a long-term
solution for non-visual access to GUIs.

5 Conclusion

This paper presents a long-term solution for providing non-visual access to graphical user interfaces, by means of an
abstraction of the user interface. The theory behind the proposed work is built upon extensive research into HCI
accessibility issues, abstract user interfaces, and alternative approaches. Only an actual experimental
implementation can put it to the test. In the coming months, a very basic visual AUI interpreter will be implemented
based on existing widget toolkits. Expanding upon that, a non-visual AUI interpreter will be developed, together
with a basic screen reader. Experimental implementations will be presented to blind users throughout the duration
of all research and development, to solicit feedback on the techniques used and their effectiveness.

Additional research will be needed in coming months. Appropriate transformations must be defined to translate
mostly visual metaphors into non-visual ones. Integration with existing AUI frameworks is also needed, not only
because modifications may be required in order to support non-visual access, but also because the proposed
approach can only be truly successful if user interface development adopts abstract user interface definitions.

Acknowledgements

The research presented in this paper is part of the author’s doctoral work at the Katholieke Universiteit Leuven,
Belgium, under supervision by Jan Engelen (ESAT-SCD-Research Group on Document Architectures).

References

Barnicle, K. (2000). Usability testing with screen reading technology in a windows environment. CUU’00:

Proceedings on the 2000 conference on Universal Usability, 102—109.

Boyd, L. H., Boyd, W. L., Vanderheiden, G. C. (1990). The graphical user interface: crisis, danger and opportunity.
Journal of Visual Impairment and Blindness, 496—502.

Donker, H., Klante, P., Gorny, P. (2002). The design of auditory user interfaces for blind users. NordiCHI ’02:
Proceedings of the second Nordic conference on Human-computer interaction, 149—156.

Edwards, W. K., Mynatt, E. D., Stockton, K. (1994). Providing access to graphical user interfaces – not graphical
screens. Assets ’94: Proceedings of the first annual ACM conference on Assistive technologies, 47—54.

Gunzenhäuser, R., Weber, G. (1994). Graphical user interfaces for blind people. 13th World Computer Congress
94, 2, 450—457.

Haneman, B., Mulcahy, M. (2002). The gnome accessibility architecture in detail. Available for download at
http://developer.gnome.org/projects/gap/presentations/.

Kawai, S., Aida, H., Saito, T. (1996). Designing interface toolkit with dynamic selectable modality. Assets ’96:
Proceedings of the second annual ACM conference on Assistive technologies, 72—79.

Mynatt, E. D., Weber, G. (1994). Nonvisual presentation of graphical user interfaces: contrasting two approaches.
CHI ’94: Proceedings of the SIGCHI conference on Human factors in computing systems, 166—172.

Pontelli, E., Gillan, D., Xiong, W., Saad, E., Gupta, G., Karshmer, A. I. (2002). Navigation of html tables, frames,
and xml fragments. Assets ’02: Proceedings of the fifth international ACM conference on Assistive
technologies, 25—32.

Rose, D., Stegmaier, S., Reina, G., Weiskopf, D., Ertl, T. (2002). Non-invasive adaptation of black-box user
interfaces. Proceedings of the Fourth Australian user interface conference on User interfaces 2003, 18, 19—
24.

Scott, N. G., Gingras, I. (2001). The Total Access System. CHI ’01 extended abstracts on Human factors in
computing systems, 13—14.

Souchon, N, Vanderdonckt, J. (2003). A review of XML-compliant user interface description languages.
Proceedings of the 10th international conference on Design, Specification and Verification of Interactive
Systems DSV-IS’2003, 377—391.

Theofanos, M. F., Redish, J. (2003). Bridging the gap: between accessibility and usability. Interactions, 10(6),
36—51.

Trewin, S., Zimmermann, G., Vanderheiden, G. (2003). Abstract user interface representations: how well do they
support universal access? CUU ’03: Proceedings of the 2003 conference on Universal usability, 77—84.

Vanderdonckt, J., Limbourg, Q., Michotte, B., Bouillon, L., Trevison, D., Florins, M. (2004). UsiXML: a user
interface description language for specifying multimodal user interfaces. Proceedings of the W3C Workshop on
Multimodal Interaction WMI’2004.

Vitense, H. S., Jacko, J. A., Emery, V. K., (2002). Multimodal feedback: establishing a performance baseline for
improved access by individuals with visual impairments. Assets ’02: proceedings of the fifth international ACM
conference on Assitive technologies, 49—56.

Weber, G., Mager, R. (1996). Non-visual user interfaces for X Windows. Interdisciplinary aspects on computers
helping people with special needs: 5th international conference/ICCHP ’96, 459—468.

	Introduction
	Related work
	AUIs and non-visual access to GUIs
	Core of the accessibility solution
	HCI issues for non-visual presentations of GUIs
	Advanced aspects of non-visual access based on AUIs
	Dynamic user interfaces
	Legacy applications
	So-called “Creative Programming”

	Comparison with past and current approaches
	Conclusion

