
Non-visual access to GUIs: Leveraging abstract user

interfaces

Kris Van Hees and Jan Engelen

Katholieke Universiteit Leuven

Department of Electrical Engineering

ESAT - SCD - DocArch

Kasteelpark Arenberg 10

B-3001 Heverlee, Belgium

kris@alchar.org, jan@docarch.be

Abstract. Various approaches to providing blind users with access to graphi-

cal user interfaces have been researched extensively in the past 15 years, and

yet accessibility is still facing many obstacles. Graphical environments such as

X Windows offer a high degree of freedom to both the developer and the user,

complicating the accessibility problem even more. Existing technology is largely

based on either a combination of graphical toolkit hooks, queries to the applica-

tion and scripting, or model-driven user interface development. Both approaches

have limitations that the proposed research addresses. This paper builds upon

past and current research into accessibility, and promotes the use of abstract user

interfaces to providing non-visual access to GUIs.

1 Introduction

Ever since graphical user interfaces (GUIs) emerged, the community of blind users has

been concerned about its effects on computer accessibility [1]. Until then, screen readers

were able to truly read the contents of the screen and render it in tactile and/or audio

format. GUIs introduced an inherently visual interaction model with a wider variety of

interface objects. MS Windows rapidly became the de facto graphical environment of

choice at home and in the workplace because of its largely consistent presentation, and

the availability of commercial screen readers created somewhat of a comfort zone for

blind users who were otherwise excluded from accessing GUIs.

As X Windows-based systems grow in popularity for both home and work environ-

ments, an additional level of complexity has emerged. Not only pose GUIs an obstacle

by being inherently visual, but it is also possible to combine elements from a variety

of graphical toolkits such as Athena, GTK, Qt, . . . into a single graphical environment.

This important feature promotes flexibility and interoperability, but it largely compli-

cates the work needed to provide accessibility. Screen readers either must support all

commonly used toolkits, or they must be designed to not depend on any implementation

specific details.

Past and current research indicates that abstracting the user interface offers a high

degree of flexibility in rendering for a multitude of output modalities. Blind users gen-

erally prefer auditory and/or tactile representations of the GUI, as an alternative to the



visual rendering provided by GUIs. Current approaches use a combination of toolkit

extensions, scripting, and complex heuristics to obtain sufficient information to make

alternative renderings possible[2]. Alternative approaches aim to solve the accessibility

problem by addressing the different output modalities in the design and development of

applications, composing model-driven user interface implementations at development

time.

The need for alternative user interface representations across different output modal-

ities makes the accessibility problem a prime candidate for using abstract user interface

(AUI) descriptions. The remainder of this paper first presents related work on GUI ac-

cessibility. The third section describes the use of AUIs at the core of an accessibility

framework, providing non-visual rendering in parallel with visual representations, fol-

lowed by a comparison of this approach against AUI-based model-driven user interface

construction. Section five concludes this paper with a description of future work.

2 Related Work

In the context of accessibility of GUIs for blind users, Mynatt and Weber provided two

early approaches[3]. The Mercator project at the Georgia institute of Technology re-

placed the GUI with a hierarchical auditory interface, whereas GUIB provided a tactile

representation of the screen contents. Contrasting both projects also established four

core design issues that are common to non-visual access to GUIs, further refined in

[4]. This early paper also provides a more general description of common approaches

towards GUI accessibility.

The ”Fruit” system described by Kawai, Aida, and Saito[5] addresses the issue of

user interface accessibility by means of an abstract widget toolkit. Application software

is still written as if a graphical widget toolkit is being used, while the actual presentation

of the user interface is handled by device-specific components. The ”Fruit” system does

not support synchronised presentation in multiple modalities, nor does it provide any

accessibility at the level of the windowing environment.

Savidis and Stephanidis explored alternative interaction metaphors for non-visual

user interfaces[6]. This work was expanded upon in the development of a user interface

development toolkit[7]. The HAWK toolkit provides interaction objects and techniques

that have been designed specifically for non-visual access. The toolkit is used in the

AVANTI project[8], introducing a Unified User Interface concept using runtime user

interface adaptation based on user and usage context.

The similarities between application user interfaces and World Wide Web forms

provide an important foundation for using AUIs. Barnicle researched specific obstacles

that blind users encounter when using GUIs[12]. His results were confirmed in later re-

search[13, 14]. The UsiXML[9] project at the Belgian Laboratory of Computer-Human

Interaction (BCHI) at the Université Catholique de Louvain builds upon these concepts.

The ability to abstract the user interface lies at the core of the research presented in this

paper.

Research into alternative user interfaces has been extensive. Two notable projects

are the ”virtual sound wall” at the Oldenburg R&D-Institute for Informatics Tools and

Systems[10], and the performance analysis of multi-modal interfaces by Vitense, Jacko,



and Emery[11]. Both solutions require expensive devices that are well outside the bud-

get of an average user. The research presented in this paper therefore limits the context

of output modalities to refreshable Braille displays, speech synthesisers, and/or non-

spatial sound.

3 Leveraging AUIs towards accessibility

The non-visual presentation of GUIs poses several HCI design issues that need to be

addressed as part of any acceptable accessibility solution. Five fundamental problems

were identified by Mynatt and Weber[3], and Gunzenhäuser and Weber[4]:

– Coherence between visual and non-visual interfaces

– Exploration in a non-visual interface

– Conveying graphical information in a non-visual interface

– Interaction in a non-visual interface

– Ease of learning

Abstract user interface rendering at runtime ensures coherence, and allows both

sighted and blind users to operate using the same mental model of the interaction se-

mantics[15, 16]. In addition, AUIs can address the three remaining fundamental HCI

problems by translating what is perceived as visual metaphors in a representation inde-

pendent manner. Some of this task is to be delegated to the screen reader implementa-

tion. E.g. while the AUI rendering is handled per application by shared components, the

screen reader is typically implemented as an application that serves the entire window-

ing environment. Figure 1 explains how non-visual access to GUIs can be implemented

by leveraging AUIs.

Java Apps GTK+ Apps

AUI AUI AUI AUI

Screen Reader

Braille DisplaysText−to−Speech

Swing

GTK+ Athena

Qt

X Windows

Qt AppsX11 Apps

Non−Visual Renderer

Application Layer

Rendering Agents

Device layer

Fig. 1. Leveraging abstract user interfaces for accessibility



Whereas current approaches work with applications that are implemented against a

specific graphical toolkit, depending on explicit support for accessibility in the toolkit,

AUI-based non-visual access builds on a paradigm where the UI of the application

is described in an abstract form. The presentation of the UI is delegated to specific

rendering agents, both visual and non-visual[15].

The advantages of this approach are not only within the context of providing non-

visual access to GUIs but also within the context of user-controlled “look & feel”.

Because applications are no longer specifically built for a given graphical toolkit and

rendering is delegated to specific agents, it is possible to render applications against any

supported toolkit. This flexibility can be a powerful feature for many users.

Leveraging AUIs allows accessible user interfaces to be implemented side-to-side

with their graphical counterparts. This resolves a long standing problem with screen

readers needing to tap into the application flow in order to retrieve the information

needed to drive alternative presentations. This puts current screen reading technologies

at a definite disadvantage.

The XML document shown in figure 2 provides an example of a fairly simple user

interface. The graphical rendering in Swing is shown in figure 3. The example applica-

tion is a card game, appealing to both a sighted and blind audience.

<?xml version="1.0"?>

<gui>

<window id="GameSys">

<menuBar>

<menu id="Game">

<menuItem id="New" label="New game"/>

<menuSeparator/>

<menuItem id="Quit"/>

</menu>

...

</menuBar>

<form id="Table" width="500" height="300"

bgImage="felt.jpg">

<form id="Card-1" width="71" height="96"

bgImage="card-1.gif"/>

...

</form>

<statusBar label="GameSys v1.0.0"/>

</window>

</gui>

Fig. 2. XML document providing an abstract user interface description

While the example presented here is very basic, it does show important features

of the presented approach. The menu bar with all its components is defined in a truly



Fig. 3. Rendering an AUI description using Swing

abstract way, whereas the main user interface uses an abstract form augmented with

additional (graphical) information, such as image sizes and background image specifi-

cations. It carries all information to facilitate both visual and non-visual presentations.

While the example is a hand-crafted AUI description, more complicated applications

would benefit from generated user interface descriptions (e.g. using UsiXML[9]).

The reference implementation currently being developed parses the XML document

describing the user interface into an abstract object model. This model drives all ren-

dering engines, providing them with information about what needs to be communicated

to the user. The rendering engines decide how the information is presented. Input from

the user is channelled from the input device to the focus manager in the abstract ob-

ject model, interacting both with the application and with the rendering engines. The

current architecture for the prototype is shown in figure 4. Note that whereas the XML

document describes only how the user interface is presented to the user, the abstract

object model also carries information on what data is to be presented as is suggested by

earlier research[17].

Although Swing is used as the underlying technology for this prototype, all of the

UI logic is handled by the AUI focus manager. This ensures that both the visual and

the non-visual presentations provide users with identical interaction models. In addi-

tion, the focus manager can make decisions based on graphical information (element

sizes, etc. . . ) without exposing the actual decision logic to the rendering agents. This

is required in order to resolve the problem of conveying graphical information in a

non-visual interface.

4 Comparison with model-based UI construction

Model-based UI construction generally covers two approaches:



Mouse

Keyboard

Braille

Speech

O
u

tp
u

t D
ev

ices
In

p
u

t D
ev

ices

Swing

S
w

in
g

N
o

n
−

V
isu

a
l

A
g

en
t

A
b

stra
ct U

ser In
terfa

ce O
b

ject M
o

d
el

A
p

p
lica

tio
n

Fig. 4. Reference implementation architecture

– Development-time UI construction

This includes all ways of generating multiple final user interfaces (generally for a

variety of modalities). Often, rather than simply creating multiple UI front-ends,

multiple versions of the application are generated due to using a more invasive

interface between the application and the user interface. A prime example is the

UsiXML project (and its derived projects)[9].

– Runtime UI selection

This includes all mechanisms that allow some form of model-driven UI customisa-

tion. Where development-time UI construction generates a set of UIs, runtime UI

selection supports alternatives for UI components. A model-driven UI engine de-

termines which alternative (if any) for a given component is to be used at any given

time. A good example of this approach is the AVANTI project[8].

The research presented in this and earlier papers[15, 16] can and will build on

development-time UI construction techniques, but it present a very different approach

in terms of accessibility. Providing non-visual access to UIs by means of modality spe-

cific implementations constructed during the development of the application makes it

impossible to share a single instance between a sighted and a blind user. As such, collab-

oration by observing the same runtime information is not possible. Runtime rendering

of the AUI allows for this by supporting multiple simultaneous renderings.

Runtime UI selection is somewhat similar to the approach presented here, in the

sense that the user interface presentation is decided upon at runtime rather than at de-

velopment time. This powerful technique supports current concepts of universal access,

and is a major advancement towards accessibility. It does not generally provide for si-

multaneous rendering in different modalities. It does involve a tight coupling between

the application and the user interface presentation, making future extension of supported

modalities more complicated. Runtime rendering of AUIs does not have that limitation.



5 Conclusion

This paper describes a novel approach to providing a long-term solution for non-visual

access to GUIs by leveraging abstract user interfaces. The theory behind the presented

work is built upon extensive research into HCI accessibility issues, AUIs, past and cur-

rent approaches to solving this complex problem, and user feedback on existing imple-

mentations.

A prototype is being developed for extensive field testing as part of this research.

Only through user feedback can success be measured appropriately. The prototype will

be enhanced to provide better support for a representative subset of commonly used

widgets so that multiple example applications can be built.

There is still a long way ahead, and ultimately, integration with existing (and in-

development) AUI frameworks will be important. Not only because modifications may

be required in order to support runtime rendering and non-visual access, but also be-

cause the proposed approach builds upon the adoption of the AUI application develop-

ment paradigm. because

Acknowledgements

The research presented in this paper is part of the author’s doctoral work at the Ka-

tholieke Universiteit Leuven, Belgium, under supervision by Jan Engelen (ESAT-SCD-

Research Group on Document Architectures).

References

1. L. H. Boyd, W. L. Boyd, and G. C. Vanderheiden. The graphical user interface: Crisis, danger

and opportunity. In Journal of Visual Impairment and Blindness, pages 496–502, 1990.

2. Gerhard Weber and Rolf Mager. Non-visual user interfaces for X Windows. In Interdisci-

plinary aspects on computers helping people with special needs, pages 459–468. 5th Inter-

national Conference, ICCHP 96, 1996.

3. Elizabeth D. Mynatt and Gerhard Weber. Nonvisual presentation of graphical user interfaces:

Contrasting two approaches. In Human Factors in Computing Systems, pages 166–172. CHI

94 – Celebrating Interdependence, 1994.

4. Rul Gunzenhäuser and Gerhard Weber. Graphical user interfaces for blind people. In

Brunnstein K. and E. Raubold, editors, 13th World Computer Congress 94, Volume 2, pages

450–457. Elsevier Science B.V., 1994.

5. Shiro Kawai, Hitoshi Aida, and Tadao Saito. Designing interface toolkit with dynamic se-

lectable modality. In Proceedings of the second annual ACM conference on Assistive Tech-

nologies, pages 72–79. ACM Press, 1996.

6. Anthony Savidis and Constantine Stephanidis. Building non-visual interaction through the

development of the Rooms metaphor. In companion of the CHI’95 conference in Human

Factors in Computing Systems, pages 244–245, 1995.

7. Anthony Savidis, Athena Stergiou, and Constantine Stephanidis. Generic Containers for

Metaphor Fusion in Non-Visual Interaction: the HAWK Interface Toolkit. In Proceedings of

the Interfaces ’97 Conference, pages 194–196, 1997.



8. Constantine Stephanidis and Anthony Savidis. Universal Access in the Information Society:

Methods, Tools, and Interaction Technologies. In Reinhard Oppermann, editor, Universal

Access in the Information Society, 1(1):40-55, 2001.

9. Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and M. Florins. Usixml: A user

interface description language supporting multiple levels of independence. In M. Lauff, ed-

itor, Proceedings of Workshop on Device Independent Web Engineering DIWE’04 (Munich,

26-27 July 2004), 2004.

10. Hilko Donker, Palle Klante, and Peter Gorny. The design of auditory user interfaces for blind

users. In Proceedings of the second Nordic conference on Human- Computer Interaction,

pages 149–156. ACM Press, 2002.

11. Holly S. Vitense, Julie A. Jacko, and V. Kathlene Emery. Multimodal feedback: establishing

a performance baseline for improved access by individuals with visual impairments. In

Proceedings of the fifth international ACM conference on Assistive Technologies, pages 49–

56. ACM Press, 2002.

12. Kitch Barnicle. Usability testing with screen reading technology in a windows environment.

In Proceedings on the 200 conference on Universal Usability, pages 102–109. ACM Press,

2000.

13. E. Pontelli, D. Gillan, W. Xiong, E. Saad, G. Gupta, and A. I. Karshmer. Navigation of html

tables, frames, and xml fragments. In Proceedings of the fifth international ACM conference

on Assistive Technologies, pages 25–32. ACM Press, 2002.

14. Mary Frances Theofanos and Janice Redish. Bridging the gap: between accessibility and

usability. Interactions, 10(6):36–51, 2003.

15. Kris Van Hees and Jan Engelen. Abstract UIs as a long-term solution for non-visual access to

GUIs. In Proceedings of the 11th International Conference on Human-Computer Interaction

(CD-ROM), 2005.

16. Kris Van Hees and Jan Engelen. Abstracting the Graphical User Interface for Non-Visual

Access. In A. Pruski and H. Knops, editors, Assistive Technology: From Virtuality to Reality

(AAATE 2005). IOS Press, 2005.

17. Shari Trewin, Gottfried Zimmermann, and Gregg Vanderheiden. Abstract user interface

representations: How well do they support universal access? In CUU ’03: Proceedings of

the 2003 conference on Universal usability, pages 77–84. ACM Press, 2003.


