
Universal Access in the Information Society manuscript No.
(will be inserted by the editor)

Equivalent representations of multi-modal user interfaces

Runtime Reification of Abstract User Interface Descriptions

Kris Van Hees · Jan Engelen

Received: date / Accepted: date

Abstract While providing non-visual access to graphical

user interfaces has been a topic of research for over 20 years,

blind users still face many obstacles when using computer

systems. Furthermore, daily life has become more and more

infused with devices that feature some kind of visual inter-

face. Existing solutions for providing multi-modal user in-

terfaces that ensure acecssibility are largely based on either

graphical toolkit hooks, queries to the application and en-

vironment, scripting, model-driven user interface develop-

ment or runtime adaptation. Parallel user interface rendering

(PUIR) is a novel approach based on past and current re-

search into accessibility, promoting the use of abstract user

interface descriptions. Based on a single consistent concep-

tual model, PUIR provides a mechanism to render a user

interface simultaneously in multiple modalities. Each repre-

sentation of the UI provides equivalent semantics to ensure

that collaboration between users of different modalities is

facilitated. The possible application of this novel technique

goes well beyond the realm of accessibility, as multi-modal

interfaces become more popular and even needed. The de-

sign presented here has been implemented as a prototype for

testing and further research in this fascinating area of HCI.

Keywords Accessibility, UIDL, Universal Access, multi-

modal interfaces, HCI

1 Introduction

Over the past few years, our world has become more and

more infused with devices that feature a graphical user in-

Katholieke Universiteit Leuven

Department of Electrical Engineering

ESAT - SCD - DocArch

Kasteelpark Arenberg 10

B-3001 Heverlee, Belgium

E-mail: kris@alchar.org, jan@docarch.be

terface, ranging from home appliances with LCD displays

to mobile phones with touch screens and voice control. The

emergence of GUIs posed a complication for blind users,

due to the implied visual interaction model. Despite the fact

that GUIs have been in existence for about 25 years, the

blind still encounter significant obstacles when faced with

this type of user interfaces. On UNIX-based systems, where

mixing graphical visualisation toolkits is common, provid-

ing non-visual access is even more problematic. The pop-

ularity of this family of systems keeps growing, while ad-

vances in accessibility technology in support of blind users

remain quite limited. Common existing solutions depend on

toolkit extensions, scripting, and complex heuristics to ob-

tain sufficient information in order to build an off-screen

model (OSM) as a basis for non-visual rendering [68,62,

35]. Other approaches use model-driven UI composition or

runtime adaptation [21,61].

Alternatives to the graphical user interface are not an ex-

clusive need of the blind. Daily life offers various situations

where presenting the UI in a different modality could be a

benefit. Sometimes the problem at hand is as simple as sun-

light glare on the screen of an Automated Teller machine

(ATM); other times one might be faced with the dangers of

operating a cellular phone while operating a vehicle [38]. In

addition, consider the use of computer displays in operating

rooms where a surgeon certainly would prefer not turning

away from their patient in order to access some information

on the screen.

All these situations are very similar to the needs of a

blind individual trying to access a computer system. Alan

Newell introduced the very important notion that by embrac-

ing the needs of extra-ordinary people, one does not limit

the applicability of the work [47]. Rather, this provides op-

portunities for advances that benefit the general public. The

presence of higher level technologies in environments where

conditions may be variable contributes to the applicability of

2 Kris Van Hees, Jan Engelen

multimodal interfaces. Consider automobile entertainment

systems, where the driver certainly should prefer not hav-

ing to operate on-screen controls or avert their eyes from

the roadway in order to read information on a screen. Be-

ing able to present the information through synthetic speech,

and providing multiple data entry methods allows for the

possibility of safe operation of in-car electronics [42].

Past and current research indicates that abstracting the

user interface offers a high degree of flexibility in rendering

for a multitude of output modalities. Leveraging the well es-

tablished paradigm of separation between presentation and

application logic [49], advances in multimodal UI develop-

ment, and existing research on abstract user interface de-

scriptions, this work presents a novel approach to providing

equivalent representations of multimodal user interfaces, us-

ing a parallel rendering technique to support simultaneous

representation and operation of the UI across different mo-

dalities. The user interface is described in a UIDL document,

and reified at runtime along multiple parallel paths.

The remainder of this article first introduces some im-

portant terminology as it relates to this work in section 2,

followed by a presentation of a reference framework that

can be applied to past and current approaches to providing

multimodal user interfaces in section 3. The state of the art is

discussed is section 4, where further requirements for the ap-

proach presented in this article are formulated. The design of

the Parallel User Interface Rendering approach is presented

in section 5. Conclusions and future work are discussed in

section 6.

2 Terminology

Many concepts and terms used in the field of HCI and re-

lated areas lack clear and consistent definitions for which

consensus has been reached. This section provides defini-

tions as they are applicable to the presented work.

2.1 Blindness and visual impairment

Various terms relating to blindness and visual impairment

are used in research literature. By its very nature, visual im-

pairment covers a very broad area ranging from no light

perception at all to blurred vision, and every gradation in

between. Light perception relates to the ability to, e.g., de-

termine through vision whether one is in a dark or bright

location. In addition, the field of view may be restricted or it

could include so-called blind spots.

The term “legally blind” is used to indicate that someone

meets a specific set of criteria based on either low acuity or

a restricted field of vision. The criteria differ from country

to country; in the United States of America, legal blindness

is defined as having a visual acuity of 20/200 or less in the

better eye, with the use of a correcting lens, or a field of vi-

sion where the widest diameter subtends an angular distance

of 20 degrees or less in the better eye [15].

The term “low vision” is used to “describe individuals

who have a serious visual impairment, but nevertheless still

have some useful vision” [26].

The term “blind” is often used in a restrictive sense to

indicate that someone’s vision is limited to light perception

or less. Individuals who are deemed “blind” do not have any

usable vision.

The term “visually impaired” is used for any individual

who is deemed legally blind [40].

2.2 Usability

Literature has defined “usability” in many different ways,

often due to differences in view point and context. Vari-

ous international standards have also provided definitions

that are not quite consistent with one another, e.g., IEEE

Std.610.12 [27], ISO/IEC 9126 [28], and ISO 9241-11 [29].

In the context of multimodal user interfaces, the latter defi-

nition is most on target. It states [29, p. 2]:

“The extent to which a product can be used by spec-

ified users to achieve specified goals with effective-

ness, efficiency and satisfaction in a specified con-

text of use.”

It specifically identifies three areas of concerns that are to

be evaluated towards qualifying usability: effectiveness, ef-

ficiency and satisfaction. When considering multiple target

user groups (e.g., groups with differing abilities and needs),

it is important to be able to measure usability as a success

criterion. Achieving equivalent levels of usability (measured

by a common standard) is a long-term goal for the approach

presented in this work.

2.3 Accessibility

Bergman and Johnson define “accessibility” as follows [3]:

“Providing accessibility means removing barriers that

prevent people with disabilities from participating in

substantial life activities, including the use of ser-

vices, products, and information.”

This definition is unfortunately not specific enough for the

work presented here. Mynatt recognised that an important

aspect of accessibility often gets overlooked or is taken for

granted [44]: “An implicit requirement [is to] facilitate col-

laboration among sighted and blind colleagues. [. . .] There-

fore it is imperative that [they] be able to communicate about

their use of application interfaces.” The barrier to collab-

oration between sighted and blind users is often overlooked

Equivalent representations of multi-modal user interfaces 3

Semantic

Print

Print

Syntactic

Lexical

Conceptual

a

file"

"Print

Concepts

Operations: print, edit, copy

Primitive tokens: dot, line, text

Print

Constructs: button, field, slider

Lev
el

 o
f A

b
st

ra
ct

io
n

Fig. 1 Four distinct layers of user interface design

when considering the accessibility and usability of computer

systems, which is a sad irony in view of the current pro-

liferation of distributed work environments where workers

are no longer in close proximity to one another. In addition,

the aforementioned definition of accessibility does not quite

make the requirement for “usability” explicit, even though it

is of great significance [67].

Specific to the context of computer systems, a more re-

fined definition of “accessibility” can therefore be formu-

lated:

A computer systems is fully accessible when (a) any

user can access and use all functionality indepen-

dently1, (b) when that user can engage in meaningful

collaboration about the system with peers, regardless

of individual needs, and (c) when all users are pro-

vided with an equivalent level of usability.

2.4 Multimodality

Within the context of this work, multimodality is more a

characteristic of the actual system than an aspect of user in-

teraction. Nigay and Coutaz provide a definition for multi-

modality from a system centric point of view [48]:

Multimodality is the capacity of a system to commu-

nicate with a user along different types of communi-

cation channels and to extract and convey meaning

automatically.

3 Reference framework

While UI design is often thought of as a self-contained and

straightforward process, four distinct layers of design can be

identified (see Fig. 1) [30,20]2, and in view of Gaver’s work

1 Either through direct manipulation (“direct access”) or indirectly

(“assisted access”) by means of some form of assistive technology so-

lution.
2 Edwards, Mynatt, and Stockton list only three layers in [20], but

they limited themselves to a description of the layers of modelling,

where the conceptual layer forms the basis for those three layers of

modelling.

concerning multiple layers of metaphor and their mappings,

they can be grouped together in function of the layer of me-

taphor (or model) they operate on:

– Conceptual metaphor layer

– Conceptual

This layer of design describes the elements from the

physical world metaphor that are relevant to the UI.

It also describes the manipulations that each element

supports.

– Semantic

This layer of design describes the functionality of

the system, in an abstract way, independent from any

specifics concerning user interaction. It defines the

operations that can be performed in the system, and

provides meaning to syntactic constructs in a specific

UI context.

– Perceptual metaphor layer

– Syntactic

This layer of design describes the operations neces-

sary to perform the functions described in the con-

ceptual layer. This description is modality specific,

using the fundamental primitive UI elements to con-

struct a higher order element that either enables some

functionality or encapsulates some information. Ex-

amples are: buttons, valuators, text input fields, etc.

These elements are presented to the user as entry

points of interaction to trigger some aspect of the

system’s functionality as defined at the conceptual

layer.

– Lexical

This layer of design maps low-level input modality

operations onto higher level fundamental operations

of UI elements. At this level, the UI is expressed as a

collection of primitive elements, such as dots, lines,

shapes, images and text.

The distinction between the different layers and their group-

ing is important in consideration of accessibility, because

solutions will generally encompass a specific layer and all

those below it (usually in the order of the list above). Adap-

tations at the lexical level may involve the use of haptic input

devices or a Braille keyboard, whereas assistive technology

solutions usually operate at the syntactic level and affect the

perceptual layer as a whole. Common examples are various

screen readers. Approaches to accessibility at the semantic

or conceptual level are less common, because they usually

require an adaptation at the level of application or system

functionality.

4 Kris Van Hees, Jan Engelen

Interface

Interface

Interface
Final User

Concrete User

Abstract User

Concepts

User

Platform

EnvironmentC
o

n
te

x
t

Tasks &

Syntactic

Lexical

Semantic

Conceptual

C
o

n
c
e
p

tu
a
l

P
e
rc

e
p

tu
a
l

Design

Layers of Metaphor

Fig. 2 Design layers in the Unifying Reference Framework

3.1 The Unifying Reference Framework

Calvary, et al. developed a Unifying Reference Framework3

(URF) [11,13,12] for multi-target user interfaces, specifi-

cally intended to support the development of context-aware

UIs4. The context of use in this framework comprises three

components: a target user population, a hardware/software

platform, and a physical environment. Each aspect of the

context of use may influence the UI development life cycle

at any of four distinct levels. The levels of abstraction recog-

nised in the Unifying Reference Framework correspond to

the four layers of UI design (see Fig. 2):

– Tasks & Concepts (T&C): User interface specification

in terms of tasks to be carried out by the user and well-

known underlying concepts (objects manipulated during

the completion of tasks).

– Abstract User Interface (AUI): Canonical expression of

the interactions described at the the T&C level. The in-

teractions can be grouped to reflect logical relations most

often seen in multi-step tasks and sequences of tasks.

– Concrete User Interface (CUI): Specification of the UI

in terms of a specific “Look & Feel”, but independent

from any specific platform. The CUI effectively defines

all user interaction elements in the UI, relations between

the elements, and layout.

– Final User Interface (FUI): The final representation of

the UI within the context of a specific platform. This is

the actual implementation of the UI. It may be specified

as source code, compiled as a pre-computed UI, or it

may be instantiated at runtime.

3 Also known as the CAMELEON Reference Framework.
4 The Unifying Reference Framework comprises more elements

than are presented here. The discussion of the state of the art does not

require all elements of the framework, and the scope has therefore been

limited to what is sufficient to describe, understand, and compare the

various approaches.

Interface

Interface

Interface
Final User

Concrete User

Abstract User

Concepts
Tasks &

User

Platform

Environment

Interface

Interface

Interface
Final User

Concrete User

Abstract User

Concepts
Tasks &

User

Platform

Environment

Context A Context B

R
e

if
ic

a
ti

o
n

R
e

if
ic

a
ti

o
n

A
b

s
tr

a
c

ti
o

n

A
b

s
tr

a
c

ti
o

n

A
d

a
p

ta
ti

o
n

Fig. 3 Unifying Reference Framework

The development of a UI (as modelled in the Unify-

ing Reference Framework) can be accomplished by means

of transformations between the aforementioned levels. Both

top–down and bottom–up transformations are possible, de-

pending on the initial design.

– Reification (top–down): A derivation process whereby

an abstract specification is made more concrete.

– Abstraction (bottom–up): A reverse engineering process

whereby an abstract specification is inferred from a more

concrete one.

By means of these two operations, the framework is able to

model a large variety of UI development processes. E.g., a

designer might prototype a UI at the concrete level using

a design tool. In this case, reification will yield the final UI,

whereas abstraction provides for the specification of the user

tasks and underlying concepts.

When multimodal user interfaces are considered, the de-

velopment of the UI spans multiple contexts of use. The Uni-

fying Reference Framework supports this with the addition

of a third operation (see Fig. 3):

– Adaptation (cross context): A transformation process in

which a UI specification at a given level for a specific

context of use is translated to a UI specification (possibly

at a different level of abstraction5) for a different context.

3.2 The CARE properties

In the context of multimodal user interfaces, possible rela-

tions between modalities may exist. Coutaz, et al. [16] define

5 The initial version of the Unifying Reference Framework [11] de-

fined the adaptation operation as a transformation between represen-

tations at the same level of abstraction. Revisions made in support of

plasticity of user interfaces (being able to adapt to context changes

without affecting usability) introduced adaptation as a cross level op-

eration.

Equivalent representations of multi-modal user interfaces 5

a set of four properties to characterise these relations: Com-

plementarity, Assignment, Redundancy, and Equivalence.

The formal definition of these properties is based on the

following important concepts:

– State: A set of measurable properties that characterise a

situation.

– Interaction trajectory: A sequence of successive states.

– Agent: An entity that can initiate the execution of an in-

teraction trajectory.

– Goal: A state that an agent intends to reach.

– Modality: An interaction method that an agent can use

to reach a goal.

– Temporal relationship: A characterisation for the use of

a set of modalities over time.

3.2.1 Equivalence

The equivalence property expresses that interaction trajec-

tory s → s′ can be accomplished using any of the modali-

ties in set M. It therefore characterises a choice of moda-

lity. It is important to note that no temporal constraint is en-

forced, i.e., different modalities may have different temporal

requirements for completing the interaction trajectory.

3.2.2 Assignment

Contrary to the equivalence property, assignment charac-

terises the absence of choice. A given modality m is said

to be assigned to the interaction trajectory s → s′ if no other

modality is used for that trajectory, either because it is the

only possible modality (StrictAssignment), or because the

agent will always select the same modality m for the trajec-

tory (AgentAssignment).

3.2.3 Redundancy

The redundancy property characterises the ability to satisfy

the interaction trajectory s → s′ with any of the modalities

in set M within temporal window tw. Redundancy comprises

both sequential and parallel temporal relations.

3.2.4 Complementarity

The complementarity property states that the modalities in

set M must be used together in order to satisfy the interaction

trajectory s → s′, i.e., none of them can individually reach

the goal.

3.3 Non-visual access to GUIs

Mynatt, Weber, and Gunzenhäuser [46,23] formulate five

important HCI concerns that need to be addressed in order

for an approach towards providing non-visual access to a

GUI to be deemed a viable solution. These concerns trans-

late to necessary requirements under the accessibility def-

inition in section 2.3, yet it is recognised that they do not

constitute a sufficient set of requirements.

– Coherence between visual and non-visual interfaces

– Exploration in a non-visual interface

– Conveying graphical information in a non-visual inter-

face

– Interaction in a non-visual interface

– Ease of learning

Weber further specified coherence in two different forms

[67]:

– Static coherence: A mapping between all visual and non-

visual objects, which lets users identify an object in each

modality.

– Dynamic coherence: A mapping that defines for each

step in interaction within the visual modality one or sev-

eral corresponding steps within the non-visual moda-

lity. This form of coherence satisfies the “Equivalence”

CARE property presented in section 3.2.

The “ease of learning” concern will not be addressed in

this article.

4 State of the art

This section presents past and current approaches to multi-

modal user interfaces in the field of HCI. While accessibility

was not the primary concern for several of these projects, the

proposed tools and techniques most certainly can be applied

to this problem. This section highlights some of the influ-

ential approaches from the field of Human-Computer Inter-

action. First, an overview of approaches is presented. Then,

two representative projects are discussed in greater detail:

the “Fruit” project in section 4.1, and the “HOMER UIMS”

in section 4.2.

Accessibility of GUIs for blind users has been a topic

of research for many years. Mynatt and Weber discussed

two early approaches [46], introducing four core design is-

sues that are common to non-visual access to GUIs. Ex-

panding on this work, Gunzenhäuser and Weber phrased a

fifth issue, along with providing a more general description

of common approaches towards GUI accessibility [23]. We-

ber and Mager provide further details on the various exist-

ing techniques for providing a non-visual interface for X11

by means of toolkit hooks, queries to the application, and

scripting [68].

Blattner et al. introduce the concept of MetaWidgets [5],

abstractions of widgets as clusters of alternative represen-

tations along with methods for selecting among them. Fur-

thermore, any specific manifestation of a metawidget is in-

6 Kris Van Hees, Jan Engelen

herently ephemeral, meaning that as time passes, the appear-

ance will change. MetaWidgets can handle these temporal

semantics as part of the object state.

The use of abstract user interfaces is largely based on

the observation that application UIs and World Wide Web

forms are very similar. Barnicle [2], Pontelli et al. [50], and

Theofanos and Redish [63] all researched the obstacles that

blind users face when dealing with user interaction models,

confirming this observation.

The Views system described by Bishop and Horspool

[4] introduces the concept of runtime creation of the user

interface representation based on an XML specification of

the UI. Independently, Stefan Kost also developed a sys-

tem to generate user interface representations dynamically

based on an abstract UI description [34]. His thesis focussed

on the modality-independent aspect of the AUI description,

providing a choice of presentation toolkit for a given appli-

cation. His work touches briefly on the topic of multiple in-

terface representations, offering some ideas for future work

in this area, while identifying it as an area of interest that

faces some significant unresolved issues.

Mir Farooq Ali conducted research at Virginia Tech on

building multi-platform user interfaces using UIML [1]. By

means of a multi-step annotation and transformation pro-

cess, an abstract UI description is used to create a platform-

specific UI in UIML. This process takes place during the

development phase, as opposed to the runtime processing

proposed in this work. His thesis identifies the applicability

of multi-platform user interfaces as a possible solution for

providing accessible user interfaces, yet this idea was not

explored any further beyond references to related work. The

research into the construction of accessible interfaces using

this approach is left as future work.

User interface description languages (UIDL) have been

researched extensively throughout the past eight to ten years.

Souchon and Vanderdonckt [60] reviewed different XML-

compliant UIDLs, finding that no single UIDL satisfies their

requirements for developing fully functional UIs. Trewin,

Zimmermann, and Vanderheiden [64,65] present technical

requirements for abstract user interface descriptions based

on Universal Access and “Design-for-All” principles, and

they evaluated four different UIDLs based on those require-

ments. The authors noted that further analysis at a more de-

tailed level is required in order to provide a realistic assess-

ment.

The Belgian Laboratory of Computer-Human Interac-

tion (BCHI) at the Université Catholique de Louvain devel-

oped an UIDL to surpass all others in terms of goals for

functionality, “capturing the essential properties [. . .] that

turn out to be vital for specifying, describing, designing, and

developing [. . .] UIs”: UsiXML [41, p. 55]. Of special im-

portance are:

Application

Program

Session
Manager

Interaction
Shell

Device Drivers

Rendering Widgets

Abstract Widgets

Comm Stub

(Image based on [31].)

Fig. 4 The Fruit system

– The UI design should be independent of any modality of

interaction.

– It should support the integration of all models used dur-

ing UI development (context of use, user, platform, en-

vironment, . . .).

– It should be possible to express explicit mappings be-

tween models and elements.

Building on the growing interest in AUI descriptions,

Draheim et al. introduced the concept of “GUIs as docu-

ments” [17]. The authors provide a detailed comparison of

four GUI development paradigms, proposing a document-

oriented GUI paradigm where editing of the graphical user

interface can take place at application runtime. In the dis-

cussion of the document-based GUI paradigm, they write

about the separation of GUI and program logic [17, p. 70]:

“This makes it possible to have different GUIs for different

kinds of users, e.g. special GUIs for users with disabilities

or GUIs in different languages. Consequently, this approach

inherently offers solutions for accessibility and internation-

alisation.” The idea did not get developed further, however.

4.1 Fruit

Kawai et al. describe the architecture for a user interface

toolkit that supports dynamic selectable modality, named

Fruit [31]. The system accommodates the needs of users

with disabilities and users in special environments by means

of a model of semantic abstraction, where a separation of

concern is enforced by decoupling the user interface from

the application functionality. This allows users to select a

UI representation that fits their circumstances as much as

possible.

The Fruit system has two immediate goals:

Equivalent representations of multi-modal user interfaces 7

– Allow a user who is operating an application program to

suspend his or her interactive session, and to resume it

from another computer system.

– Allow for the interaction with an application program to

switch from an auditory/tactile interface to a graphical

interface without interrupting the execution of the appli-

cation.

In this system, the application program is developed us-

ing a UI toolkit that provides abstract widgets, i.e., widgets

that define functionality rather than the representation in a

specific output modality. The rendering of the UI is dele-

gated to an interaction shell that uses reified widgets, i.e.,

widgets that inherit from the corresponding abstract widget,

and provide added functionality for the rendering of the wid-

get in a specific modality.

4.1.1 Architecture

Fig. 4 shows the architecture of the Fruit system. Essentially,

three main components can be identified:

– Communication stub: This is a library of abstract wid-

gets to be linked with the application code. Effectively,

the application’s UI is designed and developed based on

this toolkit library, equivalent to how it would be done

based on a graphical toolkit. The abstract widgets im-

plement the semantics of user interaction.

– Interaction shell: All interaction with the user is handled

through an interaction shell. It provides input and output

facilities through one or more modalities. In general, a

user will use a single interaction shell to operate all his

or her applications, though it should be possible to use

multiple interaction shells simultaneously. The rendered

widgets provide the representation of the UI in specific

modalities.

– Session manager: This component manages and coordi-

nates the association between the communication stubs

of applications and interaction shells. Applications reg-

ister themselves with the session manager, and the user

is then able to “connect” to an application by means

of their interaction shell of choice. It also supports sus-

pend/resume operations to allow for switching between

interaction shells.

Typical operation starts with a session manager running

on a specific host6, and the user starting an interaction shell

of their choice on their system7. To invoke a new appli-

cation, the user uses the interaction shell to signal the ap-

propriate session manager. The session manager handles the

launching of the application, providing it with communica-

tion parameters so it can contact its controlling interaction

shell.

6 Each host where application code may be executed must have a

session manager running.
7 It is possible for all components to run on a single system.

Interface

Interface
Final User

Concrete User

Concepts

Interface

Interface

Interface
Final User

Concrete User

Concepts
Tasks &

R
e

if
ic

a
ti

o
n

Interface
Abstract User

Tasks &

Abstract User

R
e

if
ic

a
ti

o
n Adaptation

Interaction ShellCommunication Stub
Application &

Fig. 5 URF diagram for Fruit

The communication stub initiates contact with the in-

teraction shell, and receives a reply that indicates the capa-

bilities of the shell, e.g., whether it can process bitmapped

images or whether it support a pointer device. The commu-

nication stub uses this information to filter the information

that is sent to the interaction shell, so that only relevant in-

formation is transmitted.

User interaction takes place from this point forward as

input is passed from the interaction shell to the application,

and output is passed back. At any moment, the user can

disconnect from the application, causing it to become sus-

pended. User interaction can be reestablished from the same

system or from another system, and with either the same in-

teraction shell or a different one.

4.1.2 Analysis

Within the context of the Unifying Reference Framework,

the Fruit system can be described as shown in Fig. 5. On

the left-hand side, the application-based UI design is shown.

The user interface is developed in the common procedu-

ral manner, implementing it based on a UI representation

toolkit. In the Fruit system, the toolkit is modality indepen-

dent, providing abstract interaction objects (AIO). This de-

sign can be presented as a reification of the tasks and con-

cepts specification into an abstract UI.

The actual representation of the UI is handled by the in-

teraction shell. In terms of the Unifying Reference Frame-

work, this component provides reification from a (possibly

filtered) abstract UI to a concrete UI for a specific modality

(or set thereof), and further reification into the final UI that

it presented to the user for interaction with the application.

The Fruit system satisfies the Equivalence CARE prop-

erty for output modalities by design, because each and every

interaction shell must be capable of providing user interac-

tion for all applications. By implication, Fruit therefore pro-

vides dynamic coherence between modalities. Static coher-

ence is also part of the design, because rendering widgets are

reifications of abstract widgets in a 1-to-1 relation. However,

8 Kris Van Hees, Jan Engelen

Toolkit Server
Visual

Visual
Toolkit

Non−visual
Toolkit

Toolkit Server
Non−visual

Manager
Dialogue

Dual

Server
Application

(Image based on [57], with permission.)

Fig. 6 HOMER UIMS

in its implementation, the system does not adhere to the sep-

aration of concerns concept. The communication stub filters

the information sent to the interaction shell based on nego-

tiated capabilities, thereby performing modality-dependent

processing where static coherence may be lost. It is there-

fore prudent to consider the static coherence only partially

satisfied. Information filtering impacts the ability to convey

meaningful graphical information in a non-visual represen-

tation as well, yielding only partial support for this aspect of

non-visual access to user interfaces.

The interaction shell provides all input and output fa-

cilities for a specific modality (or set of modalities), and is

responsible for providing the user with a user interaction en-

vironment that is equivalent to any other shells in the Fruit

system. In order to ensure that all users can access the sys-

tem in an equivalent way, the interaction shells must all im-

plement appropriate support for exploration and interaction.

The handling of input modalities is not discussed at a

sufficient level of detail in published papers for a determi-

nation to be made concerning the CARE properties of this

component.

4.2 HOMER UIMS

The HOMER UIMS [56,57] is a language-based develop-

ment framework, aimed at dual interface development: equal

user interaction support for blind and sighted people. The

dual interface concept is designed to satisfy the following

properties:

1. Concurrently accessible by blind and sighted people

Cooperation between a blind and a sighted user is recog-

nised as quite important to avoid segregation of blind in-

dividuals in their work environment. The HOMER sys-

tem supports cooperation in two distinct modes: both

users working side-by-side on the same computer sys-

tem, or the users (not physically close to one another)

working on their own computer systems.

2. The visual and non-visual metaphors of interaction meet

the specific needs of their respective user group, and they

need not be the same.

This property expresses a potential need for interaction

metaphors that are designed specifically for the blind. It

is important to note that the HOMER UIMS design is in

part addressing the perceived notion that the underlying

spatial metaphor for the GUI system is by design based

on visually oriented concepts, and therefore not appro-

priate for non-visual interaction. This property is as such

not limited to just metaphors that relate to the visualisa-

tion of the UI.

3. The visual and non-visual syntactic and lexical structure

meet the specific needs of their respective user group,

and they need not be the same.

This property (also in view of the exact meaning of the

previous property) addresses the possible need for a sep-

arate non-visual interface design. The explicit mention-

ing of the syntactic and lexical structure in this require-

ment establishes the scope for the non-visual design pro-

posed here as limited to the perceptual layer, although

that is not specifically stated.

4. At all times, the same semantic functionality is to be ac-

cessible to each user group through their respective mo-

dalities.

Essentially, the underlying functionality should be ac-

cessible to all users, albeit possibly through alternative

modalities. Regardless of the modality, the functionality

must be presented to all users in an equivalent manner.

5. At all times, the same semantic information is to be ac-

cessible to each user group through their respective mo-

dalities.

Similar to the handling of functionality as expressed in

the point above, information should be made available

to all users, by means of any appropriate modality that

can guarantee equivalency.

The second and third properties are largely based on an

analysis of sample user interfaces that employ highly visual

idioms. The authors reach the very valid conclusion that the

visual user interface may visualise information in a manner

that is not accessible to blind users and likewise interaction

techniques can be used that are inaccessible. Under those

circumstances, it seems logical that a non-visual user inter-

face (NVUI) would be designed with distinct non-visual fea-

tures (metaphors and design) to provide an accessible solu-

tion. The fourth and fifth properties provide further require-

ments for the visual and non-visual designs.

Equivalent representations of multi-modal user interfaces 9

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

LIFT

Door

Interaction Object

(Image based on [56], with permission.)

Fig. 7 The “Rooms” metaphor

4.2.1 Architecture

Fig. 6 provides a schematic overview of the “Dual Run-Time

Model” introduced with HOMER UIMS [56,57]. The ap-

plication server provides the program functionality for the

system, and remains separate from the user interaction han-

dling. All UI processing originates from the dual dialogue

manager, where virtual interaction objects provide the un-

derlying semantics of the user interface. An application pro-

gramming interface channels semantic operational data be-

tween the application and the dual dialogue manager in or-

der to maintain a separation of concerns. The actual reali-

sation of the dual UI presentations is handled by means of

an instantiation mechanism within the dual dialogue man-

ager, where the visual and non-visual physical interaction

objects that are associated with virtual interaction objects

are created. These physical objects are rendered according

to specific representation toolkits (as appropriate for chosen

modalities) by means of the toolkit servers.

It is important to note that the HOMER UIMS does not

require that every virtual interaction object is represented

by a visual and a non-visual physical object. Likewise, even

when dual physical interaction objects do exist, they need

only implement those aspects of behaviour of the virtual ob-

ject that are relevant for the modality in which the physical

object is represented. A common use can be found in vari-

ous visual effects that are associated with user interaction in

a graphical user interface.

In view of the need for a non-visual representation of

the user interface, Savidis and Stephanidis developed a new

metaphor for non-visual interaction [55], the “Rooms” me-

taphor. The rationale for this new development can be found

in their observation that existing approaches were “merely

non-visual reproductions of interactive software designed

for sighted users”, and that these approaches “explicitly em-

ploy the Desktop metaphor for non-visual interaction.” The

alternative presented by the authors is shown schematically

in Fig. 7. The interaction space comprises a collection of

virtual rooms, where each room acts as container for inter-

action objects:

Interface

Interface
Final User

Concrete User

Concepts

Interface

Tasks &

Abstract User

Interface

Interface

Interface
Final User

Concrete User

Concepts
Tasks &

Abstract User

Interface

Interface

Interface
Final User

Concrete User

Concepts
Tasks &

Abstract User

R
e
if

ic
a
ti

o
n

R
e
if

ic
a
ti

o
n

Visual Virtual Non−Visual

A
d

a
p

ta
ti

o
n

A
d

a
p

ta
ti

o
n

Fig. 8 URF diagram for HOMER UIMS

– Door: A door is a portal to a neighbouring room at the

same (vertical) level.

– Lift: A lift provides access to the room directly above or

below the current room, allowing for a change in (verti-

cal) level while retaining the same position on the hori-

zontal plane.

– Switch: An on/off switch represents a toggle.

– Book: A book is a read-only text entity.

– Button: A control to activate some functionality.

– . . .

Interaction objects can be placed on any of the six surfaces

of the room: the four walls, the floor, and the ceiling. The

user is conceptually floating at the centre of the room.

4.2.2 Analysis

Within the context of the Unifying Reference Framework,

the HOMER UIMS can be described as shown in Fig. 8.

This is a rather unusual design flow, because it does not quite

follow the typical model of adaptation from context A to

context B as shown in Fig. 3. The UI is designed from two

different angles: visual and non-visual. The modality-based

designs share a common tasks specification, but they employ

distinctly different concept spaces. Reification on both sides

yields abstract UI specifications for what is called ’physical

interaction objects’ in the HOMER UIMS. These objects are

not quite realized UI objects at the concrete level, but rather

modality-aware abstractions.

The physical interaction objects from both the visual and

the non-visual contexts are combined into a generalized ab-

straction in the context of modality-independent virtual in-

teraction objects. This is an unsual adaptation step, due to

the fact that two distinctly different contexts are combined

(and further abstracted) into a single virtual context. The vir-

tual interaction objects defined here are responsible for in-

terfacing with the application.

The realization of the user interface in dual form is ac-

complished by means of dual reification from the virtual

AUI to a visual CUI and a non-visual CUI. The actual pre-

sentation to the user is performed by a final reification from

the concrete level to the final UI.

10 Kris Van Hees, Jan Engelen

Table 1 Comparison between the Fruit system and the HOMER UIMS

Fruit HOMER

Coherence
Static Partial No

Dynamic Yes Yes

Exploration Yes Yes

Conveying graphi-

cal information

Partial No

Interaction Yes Yes

CARE
Input n/a AE

Output E AE

Conceptual model Single Dual

Concurrency Partial Yes

The very design of the HOMER UIMS is based on the

notion that non-visual access should be accomplished by

means of a new metaphor for non-visual interaction. This

makes it essentially impossible to ensure static coherence

between the visual and the non-visual representations. Like-

wise, this system does not ensure that it is possible to con-

vey meaningful graphical information in non-visual form

because the non-visual representation of the UI operates in

a totally different conceptual model and metaphor.

Dynamic coherence can be guaranteed by the design of

this system because regardless of the interaction metaphors

used, the Equivalence CARE property applies based on the

dual interface concept properties presented on page 8 (prop-

erties 4 and 5). The concept properties also provide a basis

for being able to ensure that non-visual exploration and in-

teraction are guaranteed.

The dual interface design is not merely an aspect of the

representation, i.e., the output modalities. It also affects in-

put handling. For all intents and purposes, the visual and

non-visual UIs are independent interfaces that interact with

the application by means of a shared central component.

The two UI representations handle their own input. From a

global point of view, some input may be very specific for just

one of the interfaces, whereas the majority of user input will

satisfy the Equivalence CARE property for input modalities.

Modality specific input handling relates to the Assignment

CARE property.

4.3 Comparison

The assessment of the two representative approaches in the

context of the requirements for non-visual access to user in-

terfaces and the CARE properties is summarized in Table 1.

Neither system provides for all requirements for non-visual

access, with the Fruit system not being able to fully guar-

antee static coherence and the ability to convey graphical

information in a non-visual manner. The HOMER UIMS,

on the other hand, does not support static coherence and the

conveying of graphical information at all because of its de-

sign.

Two additional aspects of multimodal user interface de-

sign can be considered important within the context of pro-

viding both visual and non-visual UI representations:

– Conceptual model: This indicates whether the approach

is based on a single conceptual model, or on multiple

conceptual models. When multiple conceptual models

are used, it is very difficult to still be able to ensure co-

herence.

– Concurrency: This indicates whether UI representations

can be rendered simultaneously.

The Fruit system is based on a single conceptual model,

encoded in the design of the abstract toolkit that is used for

the development of the application UI. The HOMER UIMS,

on the other hand, presents two conceptual models: one for

the visual representation, and one for the non-visual repre-

sentation.

In terms of concurrency of representations, the HOMER

UIMS provides for full concurrency between the visual and

non-visual interfaces. This was in fact one of the primary

goals of the system. The Fruit system on the other hand does

support concurrent representations of a single UI, but due

to a lack of detailed information beyond a basic indication

that it is possible, it can only be deemed partial concurrency.

Amongst the areas of concern are: lack of clarity on how

concurrent user input is handled, whether multiple interac-

tion shells connect directly to the application communica-

tion stub, and whether the possible filtering of information

transmitted by the communication stub is on a per-shell ba-

sis or global.

5 Parallel User Interface Rendering

The Parallel User Interface Rendering approach to provid-

ing alternative representations of graphical user interfaces

is based on the significant advantages of abstract UIs, de-

scribed in a sufficiently expressive UIDL. It also builds on

the ability to present a UI by means of runtime interpretation

of the AUI description. This section introduces the design

principles that lay the foundation for this novel technique,

and provides details on the actual design.

5.1 Introduction

Commonly used accessibility solutions for supporting blind

users on graphical user interfaces (on UNIX-based systems

and elsewhere) are mostly still “best-effort” solutions, lim-

ited by the accuracy of the off-screen model that they de-

rive from the GUI. The OSM is created based on a variety

of information sources. Much of the syntactic information

Equivalent representations of multi-modal user interfaces 11

Lexical

Syntactic

Semantic

Conceptual

Design Implementation

Functionality

Visualisation Screen Reader

Technology
Assistive

OSM

Fig. 9 Screen reader using the visual UI as information source.

can be obtained from hooks in the graphical toolkit, and by

means of support functions in the graphical environment. In

addition, various toolkits provide an API for AT solutions to

query specific information about the GUI. Sometimes, more

advanced techniques are necessary, such as OCR and inter-

posing drivers to capture data streams for low-level analysis

[25]. Further enhancement of the OSM information often in-

volves complex heuristics and application-specific scripting.

Fig. 9 provides a schematic overview of a screen reader

implementation that is typically used in current AT solu-

tions. As described above, the screen reader derives an off-

screen model from the visual representation of the GUI8.

The visualisation part of the implementation is created based

on the syntactic and lexical portions of the UI design, and

therefore the screen reader is unable to access important se-

mantic information about the UI [9]. This has proven to be

a significant limitation, often requiring application specific

scripting on the side of the screen reader to essentially aug-

ment the OSM with semantic information. Obviously, this

is a less than ideal solution because it requires UI data to be

maintained outside of the actual application. Accessibility is

also limited in function of the ability of the script writer to

capture application semantics accurately.

Clearly, OSM-based screen readers still operate entirely

based on information from the perceptual layer, and they

are thereby limited to providing a translated reproduction

of the visual interface. This is an improvement over the tra-

ditional approach of interpreting the graphical screen, but it

still depends on strictly visual information, or an interpreta-

tion thereof. The complications related to this approach are

reminiscent of a variation of the “Telephone” game, where

a chain of people pass on a message by whispering from

one to the next. Only, in this case the first person (Designer)

describes (in English) a fairly complex thought to the sec-

ond person (Implementation), who explains the thought to

8 Even though some of the data capturing may take place between

the application and the graphical toolkit (e.g., by means of an inter-

posing library), and therefore prior to the graphical rendering, the data

can still be considered visual because the application usually either tai-

lors the data in function of the chosen representation, or it passes it to

specific functions based on a chosen visualisation.

the third person (Visual Presentation), who writes down the

actual information and passes it to the fourth person (Screen

Reader, who does not read English fluently), who then ver-

bally provides the last person (a blind user) with a transla-

tion of the message. The probability that the message passes

through this chain without any loss of content is essentially

infinitesimal.

Various research efforts have focused on this problem

throughout the past 10–15 years (e.g., [57,7,35]) with mixed

success and often quite different goals.

Parallel User Interface Rendering is a novel approach

based on the following fundamental design principles:

1. A consistent conceptual model with familiar manipula-

tives as basis for all representations.

See section 5.2.

2. Support for multiple toolkits at the perceptual level.

See section 5.3.

3. Collaboration between sighted and blind users.

See section 5.4.

4. Multiple equivalent representations.

See section 5.5.

(a) The same semantic information and functionality is

accessible in each representation, at the same time.

(b) Each representation provides perceptual metaphors

that meet the specific needs of its target population.

This section commences with a discussion of the design

principles for principles for Parallel User Interface Render-

ing, which are then further refined into the actual design.

5.2 A consistent conceptual model with familiar

manipulatives as basis for all representations

The conceptual model is by far the most important design

principle for any user interface, and therefore lies at the very

basis of Parallel User Interface Rendering. Seybold writes

(discussing the Star project at Xerox PARC) ([59, p. 246],

quoting from [58]):

“Most system design efforts start with hardware spec-

ifications, follow this with a set of functional specifi-

cations for the software, then try to figure out a log-

ical user interface and command structure. The Star

project started the other way around: the paramount

concern was to define a conceptual model of how the

user would relate to the system. Hardware and soft-

ware followed from this.”

Smith, et al. define a user’s conceptual model as [59]:

Conceptual Model: The set of concepts a person grad-

ually acquires to explain the behaviour of a system.

Based on this very definition one might conclude that a

conceptual model is a user specific model, based on personal

12 Kris Van Hees, Jan Engelen

experiences while operating or interacting with a system.

While that is generally true, ample examples can be found

that indicate that there are many “systems” for which a col-

lective conceptual model exists, i.e., a model that is shared

by most people. Examples include the operation of house-

hold appliances, driving an automobile, etc. In some cases,

the same conceptual models may develop independently for

multiple individuals as they interact with a system in the

same environment, so that their experiences are sufficiently

similar. More often, however, a conceptual model becomes

a collective conceptual model through teaching, be it direct

or through guidance.

Given the need to define a conceptual model for a user

interface, designers have essentially two choices: design the

user interface based on a existing model employing famil-

iar metaphors, or develop a brand new model9. Extensive

research was done when the original GUI concept was de-

veloped, leading to the conclusion that the metaphor of a

physical office is an appropriate model [59]. It is however

important to note that this conclusion was reached in func-

tion of developing a user interface for visual presentation,

and non-visual interaction was therefore not taken into con-

sideration.

Is it then possible to have a consistent conceptual model

as basis for both visual and non-visual representations, or

does the lack of sight necessitate a specialised non-visual

conceptual model?

Savidis and Stephanidis suggest that specific interaction

metaphors are to be designed for non-visual interaction, be-

cause the “Desktop” metaphor is visual by design [55,57].

This seems to be contradictory to the design principle pre-

sented in this section, especially given that Gaver explic-

itly states that [22, p. 86]: “The desktop metaphor [. . .] is

the result of a conceptual mapping.”, thereby clearly asso-

ciating the Desktop metaphor with the conceptual model.

Savidis and Stephanidis, however, do not differentiate the

multiple layers of metaphors in a user interface the same

way as Gaver does, as evidenced by an important statement

of scope in their work [55, p. 244]: “The work [. . .] con-

cerns the general metaphor for the interaction environment

(i.e. how the user realizes the overall interaction space, like

the Desktop metaphor) which is different from metaphors

which are embedded in the User Interface design.” They as-

sociate the Desktop metaphor with the perceptual level in-

stead. Their work is therefore not contradicting the design

principle presented here. Furthermore, it actually provides

support for the design principle of needs-driven perceptual

metaphors for representation, as discussed in section 5.5.1.

Kay presents some compelling arguments to avoid the

terminology of metaphors in relation to the conceptual model

9 This not only involves defining objects and activities (functionality

of objects), but also developing strategies to introduce the new model

to the anticipated user population.

Conceptual
Model

Conceptual
Mapping

Perceptual
Mapping

Fig. 10 The role of the conceptual model

[32], instead referring to “user illusion” as a more appro-

priate phrase. Indeed, conceptual metaphors used in user

interface design are more often than not a weak analogy

with their physical counterpart. While the notion of a “pa-

per” metaphor is often used within the context of a word

processing application, users are not limited by the typical

constraints associated with writing on physical paper. Mov-

ing an entire paragraph of text from one location to another

on the “paper” is quite an easy task on a computer system,

whereas it is rather complicated to accomplish on physical

paper. Smith, et al. expressed a similar notion when express-

ing that: “While we want an analogy with the physical world

for familiarity, we don’t want to limit ourselves to its capa-

bilities.” [59, p. 251] It is clear that the underlying concep-

tual model is therefore a tool to link the internal workings

of the computer system to a model that the users can relate

to, without requiring the model to be bound by constraints

of the physical world, and without any assumptions about

representation (see Fig. 10). The mental model reflects the

metaphors that link the computer reality10 to a task domain.

With the relaxed interpretation of metaphors and under

the assumption that the separation between the conceptual

and perceptual layers is maintained, the real question be-

comes whether a blind user can fully comprehend the con-

ceptual model for a user interface. At this level, both sighted

and blind users are faced with a mental model11 that cap-

tures manipulatives12. The common model represents an of-

fice or a desktop, concepts that sighted and blind people

are certainly familiar with. Whether a user can conjure up

a visual image of the mental model is not necessarily rele-

vant in view of the assumed separation from the perceptual.

Still, often people will use visual imagery to represent the

10 “Computer reality” is defined by Gaver as [22, p. 85] “the do-

main in which computer events are described, either by reference to

the physical hardware of the system or its operations expressed in some

programming language.”
11 Sighted users may often not even realize that a mental model is

involved due to the fact that a GUI is generally presented visually using

iconic elements that are closely related to the underlying conceptual

(mental) model.
12 Objects and the manipulations that are possible on and with those

objects.

Equivalent representations of multi-modal user interfaces 13

model in their mind, regardless of whether that is truly nec-

essary to reason about it, and this applies to both sighted and

many blind users. The exact nature of this mental image and

whether it is truly visual or perhaps perceptual in an alter-

native form is a matter of individual preference and ability.

Edwards states in a very insightful yet unpublished paper (in

draft) [18]: “If an existing visual interface is to be adapted,

it may be that there are aspects of the interface which are

so inherently visual that they will be difficult to render in

a non-visual form [. . .] but the suggestion is that this need

not be the case, if the designer would not commit to a visual

representation at an early stage of the design process.” This

early stage would correspond to the development of the con-

ceptual model for the user interface, which by design should

be medium-independent in order to support this level of ac-

cessibility [19].

In an inspiring article in The New Yorker, Oliver Sacks

wrote about several blind individuals who all experienced

the effects of blindness on visual imagery and memory in

different ways [52]. One individual effectively lost not only

the ability to visualise but in fact the very meaning of vi-

sual concepts such as visible characteristics of objects and

positional concepts based on visual imagery. Other people

reported an enhanced ability to use visual imagery in their

daily life. In addition, Sacks also wrote about sighted people

who did not possess visual imagery. Noteworthy is that none

of the people discussed in Sacks’ article seemed to have any

difficulties leading a functional and successful life in a pre-

dominantly sighted world. Whether one can visualise the

physical does not seem to impact one’s ability to operate

in and interact with the world. Within the context of concep-

tual mental models, the focus should be on on what objects

exist in the model, and what one can do with them, rather

than what objects look like or how they function.

The research and analysis presented in this section sup-

ports the notion that, when a clear separation between the

perceptual and the conceptual is maintained, a single con-

ceptual model for a user interface can be appropriate for

both blind and sighted users. There is therefore no need to

consider a separate non-visual UI design at the conceptual

level.

5.3 Support for multiple toolkits at the perceptual level

Providing access to GUIs for blind users would be relatively

easy if one could make the assumption that all applications

are developed using a single standard graphical toolkit and if

that toolkit provides a sufficiently feature-rich API for assis-

tive technology. Unfortunately, this situation is not realistic.

While the majority of programs under MS Windows are de-

veloped based on a standard toolkit, the provided API still

lacks functionality that is necessary to ensure full accessi-

bility of all applications. X Windows does not impose the

Fig. 11 X11 session with multiple graphical toolkits

use of any specific toolkit, nor does it necessarily promote

one. It is quite common for users of a UNIX-based system

to simultaneously use any number of applications that are

each built upon a specific graphical toolkit. Some applica-

tions even include support for multiple graphical toolkits,

providing the user with a configuration choice to select a

specific one.

In order to be able to provide access to application user

interfaces regardless of the graphical toolkits they are devel-

oped against, the chosen approach must ensure that the pro-

vision of non-visual access is not only medium-independent

but also toolkit-independent.

Fig. 11 shows a fairly typical session on a UNIX sys-

tem, displaying four applications: Firefox, J-Pilot, Xfig, and

GAIM. Firefox and J-Pilot are built upon the GTK 1.2 graph-

ical toolkit. Xfig uses the Athena Widget Set, whereas GAIM

uses GTK 2.0. The bottom of the figure also shows the win-

dow manager button bar. The “Look & Feel” of the graphical

interaction objects for the four applications is quite differ-

ent, yet sighted users know intuitively how to operate them.

All buttons, input fields, and menu bars essentially work

the same way, regardless of how they look. To a blind user,

the visualisation of the UI element is obviously also irrele-

vant, unless somehow it is used to convey information to the

user13. The problem therefore lies with the implementation

of the accessibility solution and/or the implementation of

the toolkits. Toolkits often have very different ways in how

they implement the visualisation of a specific UI element,

which complicates the introduction functionality to support

AT needs. Toolkit developers (and vendors) may also be less

inclined to keep up with AI changes, etc.

In the GNOME Accessibility Architecture the complex-

ity of flexibility is handled in a very explicit manner: toolkits

13 It is safe to assume for the purpose of this discussion that the ele-

ment provides user interaction functionality only. Conveying informa-

tion is an aspect of abstract UI semantics that can be represented in

various ways - it is not purely related to visualisation.

14 Kris Van Hees, Jan Engelen

(Reprinted from [24] with permission.)

Fig. 12 The GNOME Desktop Accessibility Architecture

are expected to implement an accessibility API that provides

an end point for communication with the AT-SPI component

by means of a (API specific) bridge (see Fig. 12). Accessi-

bility for OpenOffice.org requires the UNO access API, and

communication with AT-SPI is currently handled by means

of a Java bridge. Likewise, Java programs make use of the

Java Accessibility API, and the Java bridge, whereas GTK-

based applications use the GNOME Accessibility ToolKit

(ATK), along with a specific ATK bridge to AT-SPI. Only

at the AT-SPI level can one consider the solution toolkit in-

dependent. In a posting to the GNOME Accessibility mail-

ing list on July 20th, 2004, Peter Korn stated that GNOME

was taking the approach that applications must “opt-in” to

accessibility. This is generally done by having the applica-

tion code explicitly call functions in the toolkit’s accessibil-

ity API to provide information that can be queried later by

means of AT-SPI, and limiting oneself to using widgets and

features that are well supported in the accessibility archi-

tecture. Another aspect often involves an additional UI de-

scription that can be loaded by an accessibility component in

the toolkit implementation. The downfall of this approach is

that the process of keeping the UI description in sync with

the application UI code is entirely manual. Note also that

there are a significant amount of common applications that

are developed as part of a competing graphical desktop en-

vironment system (KDE), and those applications are not ac-

cessible at all under GNOME because an implementation of

a bridge between Qt (the KDE graphical toolkit) and AT-SPI

is still pending.

Many of the existing approaches based on an accessi-

bility API involve mapping graphical toolkit features (wid-

gets and their interaction semantics) onto a set of accessible

features. This effectively amounts to creating an abstraction

from a realized (concrete) user interface, often with an im-

plicit loss of information14. When confronted with multiple

graphical toolkits, multiple distinct mappings are required

to accommodate abstracting all concrete UIs onto a defined

model. This has proven to be quite complex, and typically

involves significant limitations as shown above.

Section 5.6 will show that when multiple toolkits oper-

ate on the same conceptual model, effectively performing a

reification of an abstract user interface within the context of

a specific “Look & Feel”, a unified source of information

is available for assistive technologies to operate upon. Map-

ping is no longer required because accessibility information

can be derived directly from the abstraction that previously

had to be derived from each concrete UI by means of a spe-

cialised bridge.

5.4 Collaboration between sighted and blind users

The Collins English Dictionary – Complete & Unabridged

10th Edition defines the term “collaboration” as follows:

Collaboration: The act of working with another or

others on a joint project.

In order to ensure that segregation of blind users due to

accessibility issues can be avoided, appropriate support for

collaboration between the two user groups is important. This

collaboration can occur in different ways, each with its own

impact on the overall requirements for the accessibility of

the environment.

Savidis and Stephanidis [57] consider two types of col-

laboration:

– Local: Sighted and blind users interact with the applica-

tion on the same system, and they are therefore physi-

cally near one another. This would typically involve one

user approaching the other in order to ask a question or

share information about interaction with the application.

Common occurrences are often characterised by conver-

sations “let me do . . . ”, “let me show you . . . ”, and “how

about we do . . . ”.

– Remote: Sighted and blind users access the application

from different systems, and they are physically distant

from one another. This situation would typically still in-

volve a conversation as illustrated in the previous item,

possibly by means of a communication channel outside

the scope of the application (e.g., by phone). It is impor-

tant to note that both users are using physically distant

systems to access the application on a central system.

The distinction of these two types is not sufficient to ac-

curately describe the possible ways in which sighted and

14 It is important to note that although information may be lost, acces-

sibility may not be impacted because often only perceptual information

is affected.

Equivalent representations of multi-modal user interfaces 15

blind users may collaborate. Proximity between users15 does

not actually impact collaboration much as long as an ade-

quate communication channel16 is available. The ability to

interact directly with the computer system that the users col-

laborate about can certainly be a benefit, and this can often

be accomplished both locally and by means of remote con-

nectivity. Note that local collaboration between two blind

users can be a bit less efficient when a refreshable Braille

display is used, because typically only a single device will

be supported for a given computer system, requiring a pass-

the-keyboard style interaction. The work presented here al-

lows for multiple refreshable Braille displays to be operated

simultaneously on a computer system.

Consider a case where a worker walks up to a co-worker

and they discuss the user interface of an application. Even

without touching the computer system, the users can still

talk about the operation of the application, e.g. “Select this

and that, and then click on the button that reads . . . ”. This

requires that the users can understand the user interaction

semantics of the UI elements that are part of the discussion,

and that the user can either visualise the user interface, or

otherwise reason about it based on an alternative perceptual

model.

Also consider a situation where a worker needs to call

someone for help, and those who can help are at a remote

location. In the current age of distributed computing and

multi-location businesses this situation is quite common. In

this situation, collaboration may again be limited to a com-

munication channel only.

The communication portion of collaboration can occur

at two different levels (applying [22] in the broader context

of interaction between users as it relates to GUIs):

– Conceptual: Users talk in terms of the semantics of user

interaction. A quite typical conversation would resem-

ble: “Select double sided printing, and the collate option,

and then print the document.” When direct interaction is

possible (be it local or remote), the dialogue is likely to

be augmented with either a demonstration of the inter-

action, or a verification that the instruction is understood

correctly.

– Perceptual: Users talk in terms of how to operate manip-

ulatives that are present in the UI. Conversations would

resemble: “Check the double sided check box and the

collate check box, and then click on the ’Print’ button.”

Direct interaction would add a demonstration compo-

nent to the exchange, or alternatively, a mode of veri-

15 Either between blind users, or between a sighted and a blind user.

Sighted users often tend to depend on a visual focal point when collab-

orating about the interaction with a system or an application.
16 The main requirement for the communication channel is that it

provides for sufficient bandwidth to enable efficient and specific ex-

change of information. A phone connection is often much more con-

structive to collaboration than, e.g., an online chat session.

fication that the other person is accurately following the

directions.

Since proximity between users does not directly impact

their collaboration, there is no need to make a distinction

between local and remote. On the other hand, the fact that

communication between users can take place on two differ-

ent levels does require two specific cases to be considered.

Communication at the perceptual level involves details

about the representation of the user interface in a specific

modality. It is therefore not an effective way for sighted

users and blind users to discuss the operation of an appli-

cation. It requires that both parties have a good understand-

ing of the actual operational details of the representation

of the UI. While many blind users certainly understand the

vast majority of visual concepts [52], manipulation of UI el-

ements in the visual representation is often not possible17

[57]. It is also important to note that an expectation for blind

users to be able to communication with others at the percep-

tual level amounts to reducing the level of accessibility back

to the graphical screen rather than the GUI.

Perceptual collaboration: The act of working with

another or others on a joint project with communi-

cation at the perceptual level (i.e., within the context

of the representation of the user interface in a spe-

cific modality).

Communication at the conceptual level relates directly

to the semantics of user interaction for the application, inde-

pendent from any representation. In this case, the users com-

municate within the context of the conceptual model that lies

at the core of the user interface. Rather than referring to ele-

ments of the representation of the UI (visual or non-visual),

users refer to elements of the conceptual user interface.

Conceptual collaboration: The act of working with

another or others on a joint project with communica-

tion at the conceptual level (i.e., within the context

of the modality-independent user interface interac-

tion semantics).

5.5 Multiple equivalent representations

A common problem with existing approaches for non-visual

access to GUIs is related to the use of an off-screen model:

lack of coherence between the visual and the non-visual in-

terfaces. Mynatt and Weber identified this as one of the im-

portant HCI issues concerning non-visual access (see sec-

tion 3.3).

The problem is most often related to the information

gathering process that drives the construction of the OSM18.

17 Or at least, not possible in an equivalent and/or efficient manner.
18 Kochanek provides a detailed description of the construction-

process for an off-screen model for a GUI [33].

16 Kris Van Hees, Jan Engelen

Fig. 13 Example of a visual layout that can confuse screen readers.

Fig. 14 Example of the effects of a viewport on text visualisation.

Limitations in being able to obtain the following two pieces

of information often lead to this lack of coherence:

– Semantic relationships between user interface elements.

A typical example can be found in the common relation

between label and input fields. If this relation is either

not encoded in the GUI implementation, or if it is not

available through hooks, the OSM will contain the label

and the input field as independent elements. The screen

reader will present them as such, which may cause the

user to be presented with an input field without any in-

dication to what data is expected to be entered there. On

screens where multiple input fields occur in close prox-

imity, this can result in significant levels of confusion

and potential data entry errors. Fig. 13 shows an example

of how lack of semantic relation information can confuse

a screen reader. The placement of multiple label widgets

in close proximity to a text entry field makes it difficult

to determine what label should be spoken when the user

accesses the text entry field.

– Effects of the visualisation process on the actual data

contained in user interface elements.

This problem is mostly observed with larger text areas,

where the text that is actually visible in the GUI may be

much less than the actual text that is contained within the

UI element. GUI toolkits often use a viewport-technique

to render a subset of the information in the screen, in

function of the available space on the screen (Fig. 14).

If the assistive technology solution (the screen reader)

cannot obtain information on what portion of the text is

visible to the user, a blind user may be presented with

data that a sighted colleague cannot see on the screen. In

Fig. 14, a blind user would typically be presented with

an equivalent of the view at the left whereas a sighted

user would be presented with the (more limited) view on

the right. This leads to significant difficulties if the two

users wish to collaborate concerning the operation of the

application and the content of the text area.

Both problems can be solved by providing a single user

interface representation that is tailored to the specific needs

of a user or target group. Coherence is in that case not an is-

sue, because only one interface is ever presented at any given

time. Unfortunately, this impacts collaboration between users

with different needs negatively, because not everyone will

be able to accurately determine the state of the user inter-

face at any given time. Limiting the user interaction to just

one target population at a time is cleanly not an acceptable

solution.

The discussion on the collaboration design principle (sec-

tion 5.4) shows that direct access to the system is fundamen-

tal to working together successfully. The requirements for

making that possible can be summarised as follows:

– Users can access the system concurrently.

This requirement has been discussed in the preceding

paragraphs.

– Users can interact with the system by means of metaphors

that meet their specific needs.

While the user interface is designed using a single con-

sistent conceptual model with familiar manipulatives (see

section 5.2), the actual representation that the user inter-

acts with should meet the specific needs of that user. This

relates directly to the perceptual layer, covering both the

lexical and syntactic aspects of the UI design, and the

perceptual metaphors of interaction as appropriate for

the needs of a specific user population. Mynatt, Weber,

and Gunzenhäuser [46,23] present HCI concerns related

to non-visual representations of GUIs, identifying the

need to support exploration and interaction in a non-

visual interface. The generalised interpretation of this

concern is captured by this requirement, and is discussed

further in the remainder of this section.

– Coherence between UI representations is assured.

The preceding two requirements effectively describe a

configuration where multiple users can access the sys-

tem concurrently by means of representations that meet

their individual needs. The HCI concerns phrased by

Mynatt, Weber, and Gunzenhäuser [46,23] relate to a

more specialised scenario of a dual representation (vi-

sual and non-visual). Coherence between the represen-

tations was presented as an important concern. In the

more general context of multiple concurrent representa-

tions, the need for coherence certainly remains. Further

discussion on this requirement is presented at the end of

this section.

5.5.1 Each representation provides perceptual metaphors

that meet the specific needs of its target population

At the conceptual level, all users are presented with the same

user interface. No adaptations are necessary because the con-

ceptual model is by design not dependent upon any modality

of interaction (see section 5.2). Edwards suggested that there

Equivalent representations of multi-modal user interfaces 17

Functionality

Lexical

Syntactic

Semantic

Conceptual

Design

Implementation

Visualisation

Presentation

Auditory

Perceptual Representations

Fig. 15 Multiple perceptual representations of the same user interface

Concurrent representations of the same user interface, each providing

perceptual metaphors that meet the specific needs of a group of users.

is not really a substantial difference between the concep-

tual models of blind users and sighted users, but rather that

the information channels used are different [18]. Extensive

research has been conducted in exploring the information

channels that are most conducive to perceptual reasoning in

blind individuals ([22,45,10,54,53,19]). At the perceptual

level, tactile and/or auditory presentation of information is

by far the most appropriate for non-visual access. It is there-

fore obvious that blind users would be best served with spe-

cific non-visual metaphors of interaction. Likewise, other

groups of users with specific needs may benefit from spe-

cific metaphors of interaction that are different from those

that are provided in, e.g., the visual representation of the UI.

Fig. 15 illustrates the design principle of specialised rep-

resentations at the perceptual layer. The conceptual layer

captures both the conceptual and semantic levels of the de-

sign, providing a description of the functionality of the ap-

plication. The lexical and syntactic levels of the design need

to be interpreted within the context of the target popula-

tion19, thereby driving the design of the perceptual layer.

The presentation of the UI can essentially become a plug-

gable component20, interfacing with the conceptual layer of

the UI.

5.5.2 The same semantic information and functionality is

concurrently accessible in each representation

Edwards, Mynatt, and Stockton define the semantic inter-

pretation of the user interface as [20, p. 49] “the operators,

which the on-screen objects allow us to perform, not the ob-

jects themselves.” This refers to the actual functionality that

an application provides, but is only part of the semantic layer

19 Specifically, the needs of the target group as those relate to UI

interaction.
20 A pluggable component is one that can easily be replaced by an

equivalent component. The term is commonly used in UI contexts to

indicate exchangeable presentation components. It is a derivative of the

“plug-n-play” hardware concept.

in UI design. Trewin, Zimmermann, and Vanderheiden pro-

vide a more extensive list of the core elements of a user inter-

face based on what they believe should be represented in an

abstract user interface description21 [64]: variables (modifi-

able data items) that are manipulated by the user, commands

the user may issue, and information elements (output-only

data items) that are to be presented to the user.

Therefore, the semantic model of the user interface con-

sists of:

Semantic Information: Data elements in the UI that

have meaning within the context of the conceptual

model.

Semantic Functionality: Operations that can be per-

formed in the UI and that have meaning within the

context of the conceptual model.

The semantic information covers both dynamic data that

is encapsulated in UI elements that allow the user to input

or manipulate that data, and static data that carries meaning

and that is to be presented to the user. It also captures those

properties of data items that associate additional meaning to

the data.

The semantic functionality captures the manipulations

that are possible for each UI element, regardless of repre-

sentation. The functionality is defined in context of the tasks

that can be accomplished with the application.

In order to ensure coherence between concurrent rep-

resentations of the UI, the same semantic information and

functionality must be used to render the UI for each user

based on their needs. All users must be able to perform the

same user interaction operations at a semantic level, and all

users must be able to observe all results of any such opera-

tion at the same time22. While this seems to be a rather obvi-

ous requirement, existing approaches to providing access to

GUIs for the blind often provide a sub-optimal implemen-

tation where the sighted user is able to interact with a UI

element prior to a blind user being able to observe (through

synthetic speech or Braille output) that the element exists.

Similarly, sometimes a blind user can interact with a UI el-

ement that isn’t actually visible to a sighted user. This is an

example of semantic functionality that is accessible in one

representation but not in another.

5.6 Design

Using the design principles presented in the previous sec-

tions, a framework can be designed for providing access to

21 This AUI description effectively defines the user interface at the

conceptual and semantic level. It is a formal description of the concep-

tual mode.
22 Note that this does not necessarily imply that the result of user

interaction is immediate, although it has become common practice to

provide near-immediate results in support of the WYSIWYG design

principle.

18 Kris Van Hees, Jan Engelen
R

e
n

d
e

ri
n

g
 A

g
e

n
t

R
e

n
d

e
ri
n

g
 A

g
e

n
t

R
e

n
d

e
ri
n

g
 A

g
e

n
t

AUI Desc

...

Application

Output Devices

Input Devices

AUI Engine

Fig. 16 Schematic overview of Parallel User Interface Rendering

graphical user interface for blind users. This section pro-

vides details on the various components.

The schematic overview of the Parallel User Interface

Rendering approach is shown in Fig. 16. Rather than con-

structing the UI programmatically with application code that

executes function calls into a specific graphical toolkit, ap-

plications provide an AUI description expressed in a UIDL.

This authoritative AUI description is processed by the AUI

engine, and a runtime model of the UI is constructed. The

application can interact with the AUI engine to provide data

items for UI elements (e.g., text to display in a dialog), to

query data items from them (e.g., user input from a text in-

put field), or to make runtime changes in the structure of the

UI. The AUI engine implements all application semantics,

ensuring that the functionality does not depend on any spe-

cific modality.

The representation of the UI is delegated to modality

specific rendering agents, using the UI model at their source

of information. At this level, the AUI is translated into a con-

crete UI (CUI), and the appropriate widget toolkit (typically

provided by the system) is used to present the user with the

final UI, by means of specific output devices. Therefore, the

UI model that is constructed by the AUI engine serves as

information source for all the different rendering agents. All

representations of the UI are created equally, rather than one

being a derivative of another23. The application cannot in-

teract with the rendering agents directly, enforcing a strict

separation between application logic and UI representation.

23 It is important to note that it is not a requirement that all represen-

tations are generated at runtime, although development time construc-

tion of any representations could imply that dynamic updates to the UI

structure are not possible.

Rendering Agent

Rendering Agent

Rendering Agent

Application

A
U

I
E

n
g
in

e

U
s
e

r
In

te
ra

c
ti
o

n

Semantic

Event
Notification

Fig. 17 Logical flow from interaction to presentation

The handling of user interaction events from input de-

vices24 occurs at the AUI engine level. The PUIR frame-

work is based on meaningful user interaction, and therefore

only semantic user interaction events are given any consid-

eration. Given that events are typically presented to toolk-

its by means of OS level device drivers, and the fact that

these event sources are very generic25, additional process-

ing is required in order for the PUIR framework to receive

the semantic events it depends on.

Fig. 17 shows the flow of user interaction through the

PUIR framework. User interaction is presented to the AUI

engine as semantic events (activate element, select element,

etc.) Processing of the semantic event results in a notifica-

tion event being sent to all rendering agents and the appli-

cation. This event indicates that the semantic operation has

completed. Rendering agents will use this event to trigger

a presentation change (if applicable) to reflect the fact that

a specific semantic operation took place on a specific wid-

get. The application may use the notification to determine

whether program logic must be executed as a result of the

semantic operation, e.g., activating the submit button for a

form might trigger validation and processing of the form

content.

5.7 Conceptual model

The most fundamental design principle is the establishment

of a conceptual model as the basis for all UI representations.

Discussion of this principle in section 5.2 not only shows

that a single model suffices, but also that the well established

metaphors of the physical office and the desktop may be ap-

propriate for both blind and sighted users.

It can be argued that these conceptual models are inher-

ently visual, based on a spatial metaphor from a visual per-

spective, and that it is therefore advisable to design a spe-

cialised non-visual model [55]. This argument, in and of

24 The physical devices that the user employs to perform operations

of user interaction with the application.
25 Device drivers at the OS level are meant to serve all possible con-

sumers. The events they generate are most commonly very low-level

events.

Equivalent representations of multi-modal user interfaces 19

itself, is not sufficient to dismiss the existing models and

metaphors as not appropriate for blind users, because it makes

the assumption that they are not appropriate for the blind just

because they have been selected based on visual considera-

tions. The argument also fails to take collaboration between

users with different abilities into consideration, and this is

another important design principle.

To illustrate the problems with the aforementioned ar-

gument, consider the case of print-to-Braille transcription.

Braille books are known to be quite bulky due to the nature

of Braille (standard cell size, and limited opportunities to

represent a sequence of characters with a shorter sequence

of Braille cells26) and it is therefore more convenient to tran-

scribe books in ways that promote minimising the number

of pages needed to transcribe the print text. However, do-

ing so would make it much more difficult to collaborate

with sighted peers because correspondence between, e.g.,

page numbers is lost completely. It is for this reason that

the Braille Association of North America stipulate that with

the exception of some preliminary pages, all pages of text

must be numbered as in the print book [8]. Furthermore, it

specifies strict rules on how to indicate print page number

changes in the middle of a Braille page, to facilitate collabo-

ration and to support page-based references to print materi-

als. This is a clear example where the need to support collab-

oration between sighted and blind users outweighs the ad-

vantages of a format that is optimised for blind users, with-

out any regard for being able to consult references.

Blind users live and are taught in a predominantly sighted

world, where they learn to interact with many of the same

objects and concepts as their sighted peers. While there are

often definite differences in user interaction techniques be-

tween the two groups27, the semantics of the manipulation

are essentially the same. As an example, consider the task to

lower the volume of a music player. Regardless of whether

the control to do so is a slider or a turn knob, once users

know where a control is located, they generally know how

to operate it28.

It is also important to observe that although the estab-

lished terminology seems to refer to visual aspects, the un-

derlying concept is often more abstract. One does not gen-

erally consider a GUI “window” in any way equivalent to a

physical window, but rather it is seen as a two-dimensional

area that usually contains other UI elements. In a sense, it is

a top level grouping of all or part of an application UI. Many

people are able to identify windows on a screen because

they have been taught that a certain entity on the screen is

26 This is known as a contraction in English Braille, American Edi-

tion.
27 It is obvious that even amongst the blind or the sighted, not nec-

essarily everyone will prefer everything the same way. This has been a

driving force behind the efforts to provide user customisations for UIs.
28 Generically, this type of control is known as a “valuator”.

Table 2 Examples of controls and objects in the conceptual model

Control/Object Description

Window Logical container for controls, estab-

lishing a context for focusing user in-

teraction.

Button Control that can be activated, and

that can either automatically reset to

its default state after activation, or

that operates as a switch between two

states.

Set of “radio” buttons Set of buttons where only a single one

can ever be selected. It remains se-

lected until another button in the set

is selected.

Slide control A control that allows the user to select

a setting from a discrete range of val-

ues, e.g., a volume setting on a radio.

Input field A place for the user to enter informa-

tion.

Label An object that conveys information to

the user, e.g., a description of a con-

trol.

Selection list A control that allows the user to select

one or possibly more items in a list.,

e.g., a checklist for a complex task.

called a “window”, but it could as easily have been named

a “tableau”. What really matters is what you can do with it

(semantics).

Similarly, a “button” is rarely interpreted as a strict anal-

ogy with physical push button controls. Instead, it is in-

tuitively accepted as a UI element that triggers something

when it is selected. In general, most users have learnt to

think about UI elements in terms of their semantics and less

in terms of what they might represent in the physical world.

The various controls that are represented in the concep-

tual model for the UI (see Table 2 for examples of controls

and objects) are somewhat weak analogies for their physical

counterparts. As Kay stated, they should perhaps be referred

to as “user illusions” [32]. Both sighted and blind users must

approach them as concepts that are familiar, yet the mode

of interaction is inherently different. Neither user group can

truly push a button or move a slider that is merely presented

as a visual image or an auditory artifact. Still, users will

communicate in terms of the metaphor because of the fa-

miliarity of the concept.

The PUIR framework is designed around this very no-

tion, allowing for a single conceptual model that is not only

familiar to all users, but that has also been a well estab-

lished model within the context of computer systems for

many years. Using the physical office and desktop analogy

as underlying model for this work also helps maximise the

opportunity for collaboration between users with differing

abilities.

20 Kris Van Hees, Jan Engelen

5.8 AUI descriptions

Edwards, Mynatt, and Stockton suggested that the best ap-

proach for creating non-visual user interface representations

is a translation of the UI at the semantic level, i.e., ren-

der the UI in function of the needs of the user, using per-

ceptual metaphors that meet the needs of the target popu-

lation (see section 5.5.1, page 16). The perceptual layer is

merely a reification of an application’s abstract user inter-

face. Their goal was to provide non-visual access to existing

X11-based applications, and their work therefore involved

attempting to capture application information at the seman-

tic level by means of toolkit hooks. A hierarchical off-screen

model was constructed based on this information: a seman-

tic OSM. While this effectively results in a pseudo-AUI de-

scription of the application user interface, it is sub-optimal

because it is created as a derivative of the programmatic con-

structs that realize the visual representation.

The concept of abstract user interface descriptions has

been known for a long long time already, and it has mainly

been intended as a source document for the automated gen-

eration of the UI, i.e., generating application source code

for the programmatic construction of the UI representation

and its interaction with the process logic [39,41]. Using the

AUI as the basis for the UI is a powerful concept because

it provides a canonical description of the conceptual model,

thereby taking a very prominent place in the design process.

Given a sufficiently expressive UIDL, the AUI description

can enable application designers and/or developers to im-

plement a true separation of presentation and logic, and it

can alleviate part of the burden of implementing a UI by

providing for its automation.

Even when the UI implementation is generated automat-

ically based on an AUI description, providing non-visual ac-

cess to the UI is still sub-optimal because information can

still only be obtained from the realized graphical user inter-

face.

A possible solution could be to make the AUI descrip-

tion available alongside the application, to be used as an in-

formation source in support of AT solutions (i.e., the Glade

project [14]). Because the implementation of the UI is still

generally hard coded in the application, this approach does

open up the possibility that inconsistencies between the ap-

plication and the UI description occur29. In support of the

coherence design principle (see section 5.5.2, page 17), the

PUIR framework is based on the concept that all represen-

tations are to be reified from the same AUI. This is a signif-

icant paradigm shift from the majority of AT solutions that

are still implemented as a derivative of the GUI.

Can the construction of the UI representation(s) be de-

layed until execution time of the application? In other words,

29 This is a common problem in any circumstance where essentially

the same information is presented in tow different locations.

Fig. 18 Web forms bear a striking resemblance to UI data entry

screens.

On the left a web form is shown for a address book contact entry. On

the right one can see the UI for an application that implements

address book management features.

can the UI be rendered by means of AUI runtime interpreta-

tion rather than AUI development-time compilation?

When comparing a form on a web page with an applica-

tion UI where data entry is expected to occur (see Fig. 18),

striking similarities can be observed. Both feature almost

identical UI elements: buttons, drop-down lists, text entry

fields, and labels. In addition, the obstacles that blind users

face when using web forms [50,63] are known to be very

similar to the obstacles they face when interacting with GUIs

[2]. Furthermore, HTML documents are essentially abstract

descriptions, although specific modality dependent informa-

tion can be embedded in the document as augmentation to

the abstract description. Web browsers handle the rendering

of the HTML document, providing the user with a repre-

sentation that is commonly tailored to the device the user is

using, and possibly other user preferences. Based on these

observations and research on the use of AUI descriptions

(such as the works of Bishop and Horspool [4], and of Ste-

fan Kost [34]), it can be concluded that it is possible to de-

Equivalent representations of multi-modal user interfaces 21

scribe user interfaces by means of HTML-style documents,

to be rendered in function of the output modalities.

This paradigm shift from representing the UI by means

of program code in the application to utilising a system that

interprets and renders the UI based on an AUI description

document has slowly been taking place for the past ten to

twelve years. Yet, the shift has not progressed much past

the point of using the AUI description as part of the devel-

opment process. The preceding discussion shows that it is

possible (and necessary for this work) to complete the shift

to what Draheim et al. refer to as “the document-based GUI

paradigm” [17]. Expanding the notion of the representation

of the UI description to the realm of concurrent alterna-

tive representations, this can be extended as “the document-

based UI paradigm”. The advantages of this approach are

significant, although there are also important trade-offs:

– Separation of concerns between UI and application logic

This is an important technical requirement for AUI de-

scription languages [64], and the very use of AUI de-

scriptions enforces this concept through the need for a

well-defined mechanism to incorporate linking UI ele-

ments to program logic. This also implies a trade-off in

flexibility, because the application logic is limited in its

ability to directly interact with the UI.

– Maintainability of the application

When a UI is described programmatically as part of the

application, it typically will have a stronger dependency

on system features such as the presentation toolkit that

it is developed for. AUI descriptions do not exhibit this

complication, because they are toolkit independent. In

addition, the document-based nature of the AUI makes it

much easier to modify the UI for small bug fixes, whereas

a code-based UI requires changes in the application pro-

gram code.

– Adaptability

The adaptability of code-based UIs is generally limited

to toolkit-level preference-controlled customisation. In

contrast, the ability to make changes to the AUI descrip-

tion at runtime (e.g., by means of transformation rule

sets) provides for a high level of adaptability.

The document-based UI paradigm is powerful, but it does

impose some limitations on the designer/developer, because

some very specialised toolkit features may not be available

in all modalities. Toolkits for programmatically defined UI

development generally offer a more rich feature set to the

developer because they often allow access to the underlying

lexical and syntactic elements. A rendering agent that cre-

ates a UI representation based on an AUI description offers

a higher level of consistency and stability through the use

of common higher level semantic constructs, at the cost of

some flexibility.

While working towards universal access, it is important

to be mindful of the creativity and æsthetic insight of design-

ers. It is easy to reduce the user interface to its abstract se-

mantic existence, but ultimately appearance does matter30.

Empirical observation of both sighted and blind users as

they operated computer systems has shown that there is a

tendency to favour more æsthetically pleasing representa-

tions, and this seems to improve productivity. AUI descrip-

tions in the PUIR framework therefore allow for rendering

agent specific annotations to be added to the specification of

UI elements31. The information is stored by the AUI engine

for delivery to a rendering agent that requests it, but beyond

that it is ignored by the AUI engine, because it is modality

specific.

Despite the very powerful advantages of the document-

based UI paradigm, it is important to recognise that the spec-

ification of the UI at the abstract semantic level does present

a few complications, as illustrated by the following issues.

5.8.1 Dynamic user interfaces

It is common for UIs to contain elements that are not en-

tirely statically defined, i.e., they contain information that is

not known at development time. Prime examples are interac-

tion objects that contain user modifiable data and elements

that provide for user input. Another common occurrence is

a UI element that only allows conditional interaction. GUIs

often presents such elements as “grayed out”, and they do

not respond to user interaction while in that state. All these

examples do not alter the composition of the UI presenta-

tion, and they therefore do not directly impact non-visual

access.

A more disruptive feature involves truly dynamic up-

dates in the user interface. A common example can be found

in the almost iconic “File” menu on the application menu

bar. It commonly displays (alongside various operations) a

list of 5 or 10 most recently used files. The exact content and

even the size of this list cannot be determined ahead of time.

One possible solution may be the implementation of a fea-

ture in the AUI that specifies that this specific content must

be queried from the application32. Alternatively, providing

a facility for dynamic updates in the AUI description would

provide a more generic solution to this type of problem.

Abstract user interfaces are commonly described in an

XML-compliant UIDL, in a natural hierarchical structure,

namely an object tree. Given that the PUIR framework ren-

ders the UI at runtime based on the AUI description, it is

possible to support alterations to the user interface by means

30 Although “appearance” is commonly interpreted as an aspect of

visual perception, it actually carries a much broader meaning, across

multiple modalities of perception.
31 This is fundamentally different from other approaches (e.g., the

HOMER UIMS [56,57]) where UI objects are described multiple

times: once in abstract form, and once or more in modality-specific

forms.
32 This is commonly known as a “call back” feature.

22 Kris Van Hees, Jan Engelen

of adding, removing, or updating parts of the hierarchy (sub-

trees). This ensures that dynamic UI changes are possible in

a generic way. Components that render the actual represen-

tations can then receive a notification that an update is in

order.

5.8.2 Legacy applications

The adoption of AUI-based application user interface design

and development is still ongoing. It is therefore a reality that

many legacy applications will not support a UI that is gener-

ated at runtime, based on an AUI description. Two possible

approaches have been researched in recent years:

– Reverse engineering the user interface

The UsiXML project includes techniques that make it

possible to reverse engineering an existing (program-

matically defined) UI, and obtain a representative AUI

for the legacy application [6,41,66].

– Interposing toolkit library implementations

This is essentially a form of reverse engineering by cap-

turing all toolkit function calls using an API-compatible

replacement library. It provides a non-invasive approach

to capturing the programmatic construction of the UI.

One such implementation was developed by the Visual-

isation and Interactive Systems Group at the University

of Stuttgart [51].

5.8.3 “Creative programming”

By far the biggest obstacle towards providing non-visual ac-

cess to GUIs is the occasional case of extreme use of fea-

tures that are provided by user interface toolkits. In its worst

form, an enthusiastic developer may implement his or her

own toolkit, using a single large image widget from an ex-

isting toolkit as canvas for a custom rendering engine. Al-

ternatively, an existing toolkit may be extended with some

widgets that are not implemented in a compliant manner.

Creative minds have even been known to implement buttons

in dialog boxes that “run away” from the mouse pointer once

it is within a predefined pixel-distance.

The only conclusion that can be reached in view of such

creative programming is that it is not likely to be feasible to

provide non-visual access to each and every application. It

is obvious, however, that the use of techniques that result in

this level of complexity are indicative of a sub-optimal de-

sign, because the separation between application logic and

functionality, and visual presentation is lost.

5.9 AUI engine

As introduced at the beginning of this section (see page 17),

the AUI engine is the core of the PUIR framework. It pro-

vides the following functionality:

Window Group 1

Group 2

Group 3

TextField

Mult iSelect

Slider

Bu t ton 1

Bu t ton 2

Bu t ton 3

SingleSelec t

Edi tSe lec t

Fig. 19 Sample hierarchical AUI object model

– Translation of the AUI description in its textual UIDL

form into the UI object model.

– Focus management (i.e., tracking which widget is to re-

ceive context-free input, such as keyboard input).

– Implementation of the user interaction semantics of UI

elements.

The UI object model used in the AUI engine is a hier-

archical model, using a tree structure to represent the UI.

The root of the tree, the singleton node that does not have a

parent, is the window. Children of the root node are by defi-

nition components in the UI. They have exactly one parent:

a component that functions as a container, providing a way

to group multiple components together in a logical and/or

semantic unit. Components that are not containers appear as

leaf nodes in the tree structure, whereas containers appear

as internal nodes. Fig. 19 shows a partial UI object tree for a

sample UI. In this figure, the parent-child relationship is rep-

resented by left-right connections, whereas top-down stack-

ing represent grouping (sibling) relations. Note that this is

similar to the commonly used off-screen model [35].

In order to maintain a strict differentiation between group-

ing and application semantics, a container can only function

as a logical grouping of components. As such, it does not

have any semantic user interaction associated with it. In fact,

the only user interaction that is allowed for containers in the

PUIR framework is related to establishing focus.

The objects in the AUI object model are abstract widgets

(Table 3 list the supported widgets), and each was chosen

specifically because of the fact that most (if not all) users

are familiar with it. Note that the notion of using familiar

concepts traces back to the initial design principles for the

graphical user interface. Research has shown (e.g., Kurni-

awan, et al. [36,37], and Morley et al. [69,43]) that blind

users have a good understanding of most UI elements in

terms of their user interaction semantics. Being able to use

the same familiar underlying concepts supports the use of

Equivalent representations of multi-modal user interfaces 23

Table 3 Widgets provided by the AUI layer, by container

Widget Description

window Self-contained portion of a UI

Window

group Grouping of related widgets

menu bar Container for menus

status bar Notification message

tool bar Container for easy-access widgets

Menu bar

menu Container for menu items

Menu (and item groups in a menu)

menu Sub-menu (contains menu items)

menu group Grouping of menu items

menu item Menu option that can be activated

mutex Group of mutually exclusive toggles

toggle Menu option that can be toggled

Mutex groups and menu mutex groups

toggle Mutually exclusive toggle

Group (non-menu)

button Button that can be activated

edit select list Single-select list of items

(provides a write-in option)

group Logical grouping of widgets

multi select list Multi-select list of items

mutex Group of mutually exclusive toggles

single select list Single-select list of items

text Display text

textField Text entry field

toggle Selectable option

valuator Ranged value entry

a single conceptual model, and offers stronger support for

collaboration.

It is important to note that the abstract widgets listed

in Table 3 are only “visible”33 in terms of their semantics.

Some widgets (as mentioned previously) serve as a con-

tainer for parts of the UI, and they are therefore typically

only noticeable by virtue of the effect they may have on fo-

cus traversal.

From the context of an application, the AUI engine will

handle one or more windows simultaneously. In that sense,

the application itself could be considered the root of the

overall AUI object model. Yet, it is deliberately omitted in

order to maintain separation of concerns.

5.9.1 Focus management

While conceptually the GUI is primarily based on the “see-

ing and pointing” design principle, empirical evidence shows

33 In this context, being “visible” means that the user can note the

existence of the widget. Being part of the AUI, the widget obviously

has no perceptual characteristics.

that automated move-to-next-element functionality and key-

board navigation are essential components of productivity

when text entry is required. The mental context switching

between coordinating typing and pointer device movements

seems to impose a delay34.

Keyboard input (such as filling in text entry fields) oper-

ates without an implicit context as opposed to, e.g., pointer

device operations. When the user operates a mouse in order

to activate a button, the position of the pointer cursor deter-

mines what button is being activated. Keyboard input does

not explicitly indicate what UI element it belongs to. In-

stead, an external focus management component takes care

of this.

An element is said to be “in focus” or to “have focus” if

it has been selected to receive user interaction events that are

not explicitly associated with a UI element. The AUI engine

manages the process of assigning focus to elements in three

different ways:

– Programmatically: the application can request that focus

be moved to the next or the previous UI element in the

focus traversal order (see below for more information).

It can also request focus to be given to a specific element.

Aside from the application, it may also be beneficial to

allow widgets to do the same, e.g., as a default action

after an operation is completed.

– User interaction event: the user can navigate the window

by moving between UI elements by means of direct user

interaction. This is most often used for keyboard naviga-

tion (and exploration) based on the focus traversal order.

Common navigation operations are: move to next ele-

ment, move to previous element, move to next group,

move to previous group, . . .

– User interaction side-effect: when the user performs an

operation on a UI element that is not currently in focus,

it is common practice to shift focus to that element. This

is essentially a special case of the programmatical as-

signment of focus.

The “focus traversal order” mentioned in the list above

refers to a well defined strict ordering of elements across

the hierarchy of objects in the AUI object model. It specifies

in what order the various elements receive focus, in a strict

linear order. Containers are not included in the list because

they have no semantic user interaction associated with them.

The AUI engine defines the order in the AUI object model

tree as depth-first, left to right. Based on the example in

Fig. 19 (where the order is rightmost-first, top to bottom be-

cause the tree is flipped horizontally for display purposes),

the focus traversal order will be: Button 1, Button 2, Button

3, ComboBox, EditComboBox, TextField, List, Slider.

34 More specific research into the impact of mental context switching

and related topics is outside the scope of this work.

24 Kris Van Hees, Jan Engelen

5.9.2 User interaction semantics

As mentioned in section 5.6, the AUI engine is responsible

for providing an implementation of the user interaction se-

mantics of all widgets. This is crucial in the design of the

PUIR framework, because it ensures that the behaviour of

UI elements is independent from the representation of the

UI.

Various user interaction operations are supported by the

PUIR design:

– Action: This interaction is used to trigger a specific op-

eration or function. It is one of the most basic forms

of the “Seeing and Pointing” design principle for GUIs,

because it captures the familiar action of pressing the

“On/Off” button on an appliance.

– Container: All objects in the UI are encapsulated in a

container. Whenever its content changes (adding an ob-

ject or removing one), an operation of this type takes

place. Creating a new object results in adding the object

to a container, whereas deleting an object causes it to

be removed from its container. The well-known “Drag

and Drop” GUI interaction can be interpreted as a com-

binationc of removing an object from one container and

adding it to another.

– Focus: This is probably the most obscure of all forms of

user interaction. It captures the notion of what the user’s

attention is focused on. When a person is filling out a

form on paper, it is common to visually locate a specific

item, and to then bring one’s pen to the writing space that

is associated with that item. The person truly remains

focused on the item he or she is filling out.

– Selection: When a user is presented with multiple op-

tions with the restriction that only one can be chosen,

a selection process takes place. Often, a user will con-

sider several options (selecting an option, only to then

later dismiss that selection), until a final choice is made,

which is then finalised (by means of an Action opera-

tion).

– SetSelection: It is sometimes appropriate to select more

than one item from a list of choices (e.g., a buffet). Items

that are part of the selection may be consecutive or sep-

arate. It is also quite likely that the selection set may

change while the user makes up his or her mind. When

finally a decision is reached, the appropriate selection is

finalised (by means of an Action operation).

– TextCaret: This operation is (alike the Focus operation)

quite obscure because it also relates to the location on

which the user is focusing his or her attention. This op-

eration targets text, and is used as the equivalent of plac-

ing one’s pen tip in a specific position (at a particular

character in the text string).

– TextSelection: When a user intends to select some text,

he or she will commonly utilise a method that requires

Table 4 Operations supported by abstract widgets

Containers Operation(s)

group Container

menu Container, Focus, Visibility

menu bar Container

mutex Container

status bar Container, ValueChange

tool bar Container

window Container, Focus, Visibility

Components Operation(s)

button Focus, Action

edit select list Focus, Selection, ValueChange, Action

multi select list Focus, SetSelection, Action

menu item Focus, Action

single select list Focus, Selection, Action

text ValueChange

text field Focus, TextCaret, TextSelection, Val-

ueChange, Action

toggle Focus, Action

valuator Focus, ValueChange, Action

the least effort. If the user knows that an entire line of

text is to be selected, locating any point on that line is

generally sufficient. Likewise, when trying to select a

specific word, any point within the word boundaries is

usually acceptable. Only when the text selection is more

complex, will a user specifically select starting and end

points by character.

– ValueChange: Any element that represents a dynamic

value, i.e., an element for which the user can select or in-

put a specific value, supports user interaction that mod-

ifies the current value. The changing of the value is not

a final operation, as it is not uncommon for a user to

change their mind (even multiple times) before deciding

on the final value (which is then finalised by means of

an Action operation).

– Visibility: For widgets that are not always represented in

the UI, a conceptual characteristic of visibility can be

assigned. While ordering food in a restaurant, a person

typically consults a menu. Once the desired selection is

made and communicated to the waiter, the menu is often

taken away by the waiter, or it is put aside. No one pays

any attention to it unless a followup order (or the intent

to) is anticipated.

User interaction is presented to the AUI engine as se-

mantic events, targeted at the widget it operates on. The op-

erations that each widget supports are listed in Table 4. The

abstract widget implementation handles the event, and (usu-

ally) dispatches notification events to rendering agents and

the application to indicate that the semantic operation has

been processed.

Equivalent representations of multi-modal user interfaces 25

GWindow GGroup 1

GGroup 2

GGroup 3

GTextField

GMultiSelectList

GSlider

GBut ton 1

GBut ton 2

GBut ton 3

GSingleSelectList

GEditSelectList

JLabel

JTextField

JTextField

Fig. 20 Sample hierarchical CUI object model for the AUI in Fig. 19

The clear boxes indicate components that are created in one-to-one

correspondence with the AUI model. The shaded components are

necessary additions in order to render the UI correctly in the specific

rendering agent.

5.10 Rendering agents

The AUI engine described in section 5.9 operates entirely

within the context of the abstract UI object model, at the

conceptual level. In order to be able to present the user with

a UI representation within the context of a specific modality,

the AUI must go through a reification process. This part of

the PUIR framework operates at the perceptual level and is

provided by the rendering agents.

Each rendering agent provides AUI reification within the

context of one or more modalities. This is generally done as

a two-step process:

1. On request of the AUI engine, a concrete UI object model

is constructed, incorporating a specific “Look & Feel”

based on an established set of interaction metaphors.

2. Based on a modality-specific presentation toolkit, the

CUI from the previous step is finalised into the FUI that

is presented to the user.

5.10.1 Mapping the AUI model onto a CUI model

Fig. 20 provides a (partial) example of the CUI object model

that a rendering agent might build based on the AUI object

model that resides with the AUI engine (Fig. 19). As illus-

trated in this example, there is no guarantee for a one-to-one

correspondence between the two models, because abstract

widgets may very well map onto multiple concrete widgets.

This is the case for the abstract TextField widget that, e.g.,

as part of a visual representation agent based on Java Swing

is presented as a JLabel object and a JTextField object.

The reverse is certainly possible as well. A rendering

agent may have no need for some intermediary container

objects, and thereby map multiple abstract widgets onto a

single more complex presentation widget. Note that regard-

less of the mappings between models, the user interaction

semantics remain the same.

5.10.2 User interaction

In support of the separation of concerns concept as sug-

gested by Parnas [49], there is no direct communication be-

tween the application and the rendering agents whatsoever.

Any and all requests (be it from the application or the render-

ing agent) are to be processed by the AUI engine, which will

then provide notification to the rendering agents. Upon re-

ceiving a notification event, a determination is made whether

the operation requires rendering the change in the represen-

tation of the UI.

Many commonly available presentation toolkits provide

an implementation for both the presentation and interaction

components of the UI, rendering the effects of a user inter-

action immediately, and providing a notification or call back

mechanism to the application to allow the program logic

to react to the user interaction event. Within the require-

ments of the PUIR design principles, if a presentation toolkit

contains a user interaction component, any events from this

component must be forwarded to the AUI engine for pro-

cessing, and the presentation of UI changes as a result of the

interaction (e.g., visually showing that a button was pressed,

or providing auditory feedback for the same action) must

only take place as a response to receiving a notification event

from the AUI engine that a specific semantic operation took

place. Without this clear separation it would be very difficult

to ensure coherence between parallel representations35.

It is important to note that rendering agents may imple-

ment context-specific user interaction. This level of interac-

tion is independent from the actual UI and the application

semantics, and therefore not restricted to processing by the

AUI engine. Being able to provide this level of interaction is

important in order to support exploration of the UI in alter-

native representations, as a solution to one of the HCI issues

related to the usability of alternative UIs (see section 3.3).

The user interaction provided by the rendering agent must

not result in actual UI interaction, and it therefore operates

as a distinct UI mode, i.e., all user input is interpreted as

exploration-only operations.

5.10.3 Queries to the AUI engine

The rendering agent must also be able to query information

from the AUI engine, as needed. Such queries are almost al-

ways in response to receiving an event from the AUI engine,

but there may be legitimate reasons for the rendering agent

to spontaneously request some data from the AUI engine.

The most common use is to request additional information

35 A common problem would be that the modality in which the user

interaction was initiated might render the feedback prior to the appli-

cation logic responding to the operation, whereas all other renderings

would render feedback afterwards. This is also commonly observed in

assistive technology solutions such as screen readers that are imple-

mented as a derivative to the graphical representation.

26 Kris Van Hees, Jan Engelen

Interface

Interface
Final User

Concrete User
Interface

Interface
Final User

Concrete User
Interface

Interface

Interface
Final User

Concrete User

Tasks &

Abstract User

R
e
if

ic
a
ti

o
n

R
e
if

ic
a
ti

o
n

Visual Non−Visual

Concepts
Tasks &
Concepts

Abstract User
Interface

Abstract User
Interface

Tasks &
Concepts

Virtual

A
d

a
p

ta
ti

o
n

A
d

a
p

ta
ti

o
n

R
e
if

ic
a
ti

o
n

Fig. 21 URF diagram for PUIR

about a component in the AUI object model in order to ren-

der that component.

5.10.4 Modality-specific limitations

The rendering agent may impose some limitations on the

overall UI due to modality-specific limitations. Due to the

significant impact imposed on the entire UI, care must be

taken to only require this when absolutely necessary. One

common relatively low-impact limiting requirement is syn-

chronisation. When only a single representation is used, the

UI is primarily self-synchronising because the user cannot

interact with components that are not rendered yet. In the

presence of parallel representations, it may be necessary to

ensure that all agents are presenting the same state of the UI

at any given time. Latency with some modalities may there-

fore require delays to be inserted into the flow of interaction.

5.11 Analysis

In the context of the Unified Reference Framework presented

in section 3.1, the Parallel User Interface Rendering approach

can be described schematically as shown in Fig. 21.

In comparison with the URF diagram for the Fruit sys-

tem (Fig. 5) and HOMER UIMS (Fig. 8), it is clear that

from a model perspective PUIR is a combination of Fruit

and HOMER UIMS. One might say that it is the best of both

worlds.

The user interface for an application is designed as a

reification process from a tasks and concepts definition to

an abstract UI, independent from any modality. Rendering

in specific modalities is accomplished as a cross-level adap-

tation operation (adaptation combined with reification), con-

structing a concrete user interface based on the AUI. Further

reification yields the final UI. Note that the adaptation step

from AUI to CUI can be performed for multiple contexts of

use (modalities) simultaneously.

In this model, all interaction between the application and

the UI is handled by the AUI, whereas interaction between

a user and the system is the responsibility of the rendering

agents.

In consideration of the non-visual access concerns ex-

pressed in section 3.3, it is obvious that static and dynamic

coherence can be guaranteed by the PUIR approach, given

that all representations are derived from the same source. By

careful implementation of the reification and adaptation op-

erations in UI representation construction, it is possible to

ensure the Equivalence CARE property. Likewise, convey-

ing meaningful graphical information is assured because the

rendering agents receive all events, be they related to visual

aspects or not.

Input is processed at the level of the rendering agent,

and translated into semantic events prior to being passed

on to the AUI engine. This allows the rendering agents to

implement modality-specific (or need-specific) exploration

features that are guaranteed to not interfere with the opera-

tion of the system. It also provides the freedom to provide

user interaction operations that are tailored to the needs of

the user.

As an approach to providing equivalent representations

of multi-modal user interfaces, and in view of the fact that

a single conceptual model lies at the basis of this novel ap-

proach, the short analysis presented in this section demon-

strates that this technique satisfies all requirements.

6 Conclusions and Future Work

Parallel User Interface Rendering is proving to be a very

powerful technique in support of the Design-for-All and Uni-

versal Access principles. It builds on a solid base of research

and development of abstract user interfaces and UIDLs, and

it provides a framework where non-visual rendering of the

UI operates at the same level as the visual rendering rather

than as a derivative. The design principles build a founda-

tion for a very powerful approach. Especially user collab-

oration benefits greatly from this approach because of the

coherence between all renderings, allowing communication

about user interaction to be based on a substantially similar

mental model of the user interface.

The current proof-of-concept implementation is based

on a custom UIDL, but for further development36 collabora-

tion with a UIDL is expected. The decision to continue with

a broader interpretation of the original GUI design princi-

ples drives the choice of underlying UIDL. The ability of,

e.g., UsiXML to capture the UI with models at different lev-

els of abstraction can be a real asset to this novel approach.

It important to recognise that any approach that allows

for a high degree of flexibility increases the risk that some-

one will use that flexibility in a way that interferes with the

very design principles that the presented solution is based

upon. This work does not intend to guarantee that any UI

36 And in order to work towards a possible future adoption as an AT

support solution.

Equivalent representations of multi-modal user interfaces 27

developed within the PUIR framework will be 100% acces-

sible. However, the presented work promotes sound UI de-

sign, and ensures that at a minimum each user is aware of

the existence of UI elements, even if it is possible that in

rare cases 100% functional user interaction cannot be as-

sured due to potential improper use of features.

The PUIR framework can contribute to the field of ac-

cessibility well beyond the immediate goal of providing non-

visual access to GUIs. The generic approach behind the PUIR

design lends itself well to developing alternative rendering

agents in support of other disability groups. Because ren-

dering agents need not necessarily execute local to applica-

tions, accessible remote access is possible as well. The PUIR

framework may also benefit automated application testing,

by providing a means to interact with the application pro-

grammatically without any dependency on a specific UI ren-

dering.

Acknowledgements The research presented in this paper is part of

the author’s doctoral work at the Katholieke Universiteit Leuven, Bel-

gium, under supervision by Jan Engelen (ESAT-SCD-Research Group

on Document Architectures).

References

1. Ali, M.F.: A transformation-based approach to building multi-

platform user interfaces using a task model and the user interface

markup language. Ph.D. thesis, Virginia Polytechnic Institute and

State University (2004)
2. Barnicle, K.: Usability testing with screen reading technology in

a Windows environment. In: Proceedings of the 2000 Conference

on Universal Usability, CUU ’00, pp. 102–109. ACM (2000)
3. Bergman, E., Johnson, E.: Toward accessible human-computer in-

teraction. In: J. Nielsen (ed.) Advances in human-computer inter-

action (vol. 5), pp. 87–113. Ablex Publishing Corp. (1995)
4. Bishop, J., Horspool, N.: Developing principles of GUI program-

ming using views. In: Proceedings of the 35th SIGCSE techni-

cal symposium on Computer science education, SIGCSE ’04, pp.

373–377. ACM (2004)
5. Blattner, M., Glinert, E., Jorge, J., Ormsby, G.: Metawidgets: to-

wards a theory of multimodal interface design. In: Computer

Software and Applications Conference, 1992. COMPSAC ’92.

Proceedings., Sixteenth Annual International, pp. 115–120. IEEE

Computer Society Press (1992)
6. Bouillon, L., Vanderdonckt, J., Chow, K.C.: Flexible re-

engineering of web sites. In: Proceedings of the 9th international

conference on Intelligent user interfaces, IUI ’04, pp. 132–139.

ACM (2004)
7. Bouraoui, A., Soufi, M.: Improving computer access for blind

users. In: K. Elleithy (ed.) Advances and Innovations in Sys-

tems, Computing Sciences and Software Engineering, pp. 29–34.

Springer Netherlands (2007)
8. Braille Authority of North America: Braille Formats: Principles of

Print to Braille Transcription 1997. American Printing House for

the Blind (1998)
9. Brunet, P., Feigenbaum, B.A., Harris, K., Laws, C., Schwerdt-

feger, R., Weiss, L.: Accessibility requirements for systems de-

sign to accommodate users with vision impairments. IBM Syst. J.

44(3), 445–466 (2005)
10. Buxton, W., Gaver, W., Bly, S.: Auditory interfaces: The use of

non-speech audio at the interface (1994). Draft manuscript

11. Calvary, G., Coutaz, J., Thevenin, D.: A unifying reference frame-

work for the development of plastic user interfaces. In: Proceed-

ings of the 8th IFIP International Conference on Engineering for

Human-Computer Interaction, EHCI ’01, pp. 173–192. Springer-

Verlag (2001)

12. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L.,

Vanderdonckt, J.: A unifying reference framework for multi-target

user interfaces. Interacting with Computers 15(3), 289–308 (2003)

13. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Souchon, N.,

Bouillon, L., Florins, M., Vanderdonckt, J.: Plasticity of user in-

terfaces: A revised reference framework. In: Proceedings of the

First International Workshop on Task Models and Diagrams for

User Interface Design, pp. 127–134. INFOREC Publishing House

Bucharest (2002)

14. Chapman, M.: Create user interfaces with glade. Linux J.

2001(87), 90–92,94 (2001)

15. Congress of the United States of America: 42 U.S.C. – The Public

Health and Welfare, Section 1382(a)2). GPO (1997)

16. Coutaz, J., Nigay, L., Salber, D.: Multimodality from the user and

system perspectives. In: Proceedings of the ERCIM’95 workshop

on Multimedia Multimodal User Interfaces (1995)

17. Draheim, D., Lutteroth, C., Weber, G.: Graphical user interfaces

as documents. In: Proceedings of the 7th ACM SIGCHI New

Zealand chapter’s international conference on Computer-human

interaction: design centered HCI, CHINZ ’06, pp. 67–74. ACM

(2006)

18. Edwards, A.D.N.: The difference between a blind computer user

and a sighted one is that the blind one cannot see (1994). Interac-

tionally Rich Systems Network, Working Paper No. ISS/WP2

19. Edwards, A.D.N., Mitsopoulos, E.: A principled methodology for

the specification and design of nonvisual widgets. ACM Trans.

Appl. Percept. 2(4), 442–449 (2005)

20. Edwards, W.K., Mynatt, E.D., Stockton, K.: Providing access to

graphical user interfaces – not graphical screens. In: Proceedings

of the first annual ACM conference on Assistive technologies, As-

sets ’94, pp. 47–54. ACM (1994)

21. Gajos, K., Weld, D.S.: SUPPLE: automatically generating user in-

terfaces. In: IUI ’04: Proceedings of the 9th international confer-

ence on Intelligent user interfaces, pp. 93–100. ACM Press (2004)

22. Gaver, W.W.: The sonicfinder: an interface that uses auditory

icons. Hum.-Comput. Interact. 4(1), 67–94 (1989)

23. Gunzenhäuser, R., Weber, G.: Graphical user interfaces for blind

people. In: K. Brunnstein, E. Raubold (eds.) 13th World Com-

puter Congress 94, Volume 2, pp. 450–457. Elsevier Science B.V.

(1994)

24. Haneman, B., Mulcahy, M.: The GNOME accessibility architec-

ture in detail (2002). Presented at the CSUN Conference on Tech-

nology and Disabilities

25. Harness, S., Pugh, K., Sherkat, N., Whitrow, R.: Fast icon and

character recognition for universal access to WIMP interfaces for

the blind and partially sighted. In: E. Ballabio, I. Placencia-

Porrero, R.P.d.l. Bellcasa (eds.) Rehabilitation Technology: Strate-

gies for the European Union (Proceedings of the First Tide

Congress), pp. 19–23. IOS Press, Brussels (1993)

26. Hollins, M.: Understanding Blindness: An Integrative Approach.

Lawrence Erlbaum Associates (1989)

27. Institute of Electrical and Electronics Engineers: 610.12-1990,

IEEE Standard Glossary of Software Engineering Terminology.

IEEE, Los Alamos, CA (1990)

28. International Organization for Standardization: ISO/IEC 9126,

Information Technology, Software Product Evaluation, Quality

Characteristics and Guidelines for their Use. ISO, Geneva (1991)

29. International Organization for Standardization: ISO/IEC 9241-11,

Ergonomic Requirements for Office Work with Visual Display

Terminals (VDTs), Part 11: Guidance on Usability. ISO, Geneva

(1998)

28 Kris Van Hees, Jan Engelen

30. Jacob, R.J.K.: User interfaces. In: A. Ralston, E.D. Reilly,

D. Hemmendinger (eds.) Encyclopedia of Computer Science,

Fourth Edition. Grove Dictionaries, Inc. (2000)

31. Kawai, S., Aida, H., Saito, T.: Designing interface toolkit with dy-

namic selectable modality. In: Proceedings of the second annual

ACM conference on Assistive technologies, Assets ’96, pp. 72–

79. ACM (1996)

32. Kay, A.C.: User interface: A personal view. In: B. Laurel (ed.) The

Art of Human-Computer Interface Design, pp. 191–207. Addison-

Wesley Publishing Co. (1990)

33. Kochanek, D.: Designing an offscreen model for a gui. In: W. Za-

gler, G. Busby, R. Wagner (eds.) Computers for Handicapped Per-

sons, Lecture Notes in Computer Science, vol. 860, pp. 89–95.

Springer Berlin / Heidelberg (1994)

34. Kost, S.: Dynamically generated multi-modal application inter-

faces. Ph.D. thesis, Technische Universität Dresden, Dresden,

Germany (2006)

35. Kraus, M., Völkel, T., Weber, G.: An off-screen model for tactile

graphical user interfaces. In: K. Miesenberger, J. Klaus, W. Za-

gler, A. Karshmer (eds.) Computers Helping People with Special

Needs, Lecture Notes in Computer Science, vol. 5105, pp. 865–

872. Springer Berlin / Heidelberg (2008)

36. Kurniawan, S.H., Sutcliffe, A.G.: Mental models of blind users in

the Windows environment. In: K. Miesenberger, J. Klaus, W. Za-

gler (eds.) Computers Helping People with Special Needs, Lec-

ture Notes in Computer Science, vol. 2398, pp. 373–386. Springer

Berlin / Heidelberg (2002)

37. Kurniawan, S.H., Sutcliffe, A.G., Blenkhorn, P.L.: How blind

users’ mental models affect their perceived usability of an unfa-

miliar screen reader. In: M. Rauterberg, M. Menozzi, J. Wesson

(eds.) Human-Computer Interaction INTERACT ’03, pp. 631–

638. IOS Press (2003)

38. Laberge-Nadeau, C.: Wireless telephones and the risk of road

crashes. Accident Analysis & Prevention 35(5), 649–660 (2003)

39. Lauridsen, O.: Abstract specification of user interfaces. In: Con-

ference companion on Human factors in computing systems, CHI

’95, pp. 147–148. ACM (1995)

40. Lévesque, V.: Blindness, technology and haptics. Tech. Rep. TR-

CIM-05.08, McGill University, Centre for Intelligent Machines,

Haptics Laboratory (2008)

41. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L.,

Florins, M., Trevisan, D.: UsiXML: A user interface description

language for context-sensitive user interfaces. In: K. Luyten,

M. Abrams, J. Vanderdonckt, Q. Limbourg (eds.) Proceedings of

the ACM AVI’2004 Workshop ”Developing User Interfaces with

XML: Advances on User Interface Description Languages”, pp.

55–62 (2004)

42. de Melo, G., Honold, F., Weber, M., Poguntke, M., Berton, A.:

Towards a flexible ui model for automotive human-machine inter-

action. In: Proceedings of the 1st International Conference on Au-

tomotive User Interfaces and Interactive Vehicular Applications,

AutomotiveUI ’09, pp. 47–50. ACM (2009)

43. Morley, S.: Window Concepts: An Introductory Guide for Visually

Disabled Users. Royal National Institute for the Blind (1995)

44. Mynatt, E.D.: Transforming graphical interfaces into auditory in-

terfaces for blind users. Hum.-Comput. Interact. 12(1), 7–45

(1997)

45. Mynatt, E.D., Edwards, W.K.: Mapping guis to auditory inter-

faces. In: Proceedings of the 5th annual ACM symposium on User

interface software and technology, UIST ’92, pp. 61–70. ACM

(1992)

46. Mynatt, E.D., Weber, G.: Nonvisual presentation of graphical user

interfaces: contrasting two approaches. In: Proceedings of the

SIGCHI conference on Human factors in computing systems: cel-

ebrating interdependence, CHI ’94, pp. 166–172. ACM (1994)

47. Newell, A.F.: CHI for everyone. Interfaces 35, 4–5 (1997)

48. Nigay, L., Coutaz, J.: A design space for multimodal systems: con-

current processing and data fusion. In: Proceedings of the INTER-

ACT ’93 and CHI ’93 conference on Human factors in computing

systems, CHI ’93, pp. 172–178. ACM (1993)

49. Parnas, D.L.: On the criteria to be used in decomposing systems

into modules. Commun. ACM 15(12), 1053–1058 (1972)

50. Pontelli, E., Gillan, D., Xiong, W., Saad, E., Gupta, G., Karshmer,

A.I.: Navigation of HTML tables, frames, and XML fragments.

In: Proceedings of the fifth international ACM conference on As-

sistive technologies, Assets ’02, pp. 25–32. ACM (2002)

51. Rose, D., Stegmaier, S., Reina, G., Weiskopf, D., Ertl, T.: Non-

invasive adaptation of black-box user interfaces. In: Proceedings

of the Fourth Australasian user interface conference on User inter-

faces 2003 - Volume 18, AUIC ’03, pp. 19–24. Australian Com-

puter Society, Inc. (2003)

52. Sacks, O.: The mind’s eye: What the blind see. The New Yorker

pp. 48–59 (2003)

53. Sadato, N., Pascual-Leone, A., Grafman, J., Deiber, M.P., Ibañez,

V., Hallett, M.: Neural networks for braille reading by the blind.

Brain 121, 1213–1229 (1998)

54. Sadato, N., Pascual-Leone, A., Grafman, J., Ibañez, V., Deiber,

M.P., Dold, G., Hallett, M.: Activation of the primary visual cortex

by braille reading in blind subjects. Nature 380(6574), 526–528

(1996)

55. Savidis, A., Stephanidis, C.: Building non-visual interaction

through the development of the rooms metaphor. In: Conference

companion on Human factors in computing systems, CHI ’95, pp.

244–245. ACM (1995)

56. Savidis, A., Stephanidis, C.: Developing dual user interfaces for

integrating blind and sighted users: the HOMER UIMS. In: Pro-

ceedings of the SIGCHI conference on Human factors in comput-

ing systems, CHI ’95, pp. 106–113. ACM Press/Addison-Wesley

Publishing Co. (1995)

57. Savidis, A., Stephanidis, C.: The HOMER UIMS for dual user

interface development: Fusing visual and non-visual interactions.

Interacting with Computers 11(2), 173–209 (1998)

58. Seybold, J.: Xerox’s ”star”. The Seybold Report 10(16) (1981)

59. Smith, D.C., Harslem, E.F., Irby, C.H., Kimball, E.B., Verplank,

W.L.: Designing the Star User Interface. BYTE pp. 242–282

(1982)

60. Souchon, N., Venderdonckt, J.: A review of XML-compliant user

interface description languages. In: J.A. Jorge, N. Jardim Nunes,

J. Falcāo e Cunha (eds.) Interactive Systems. Design, Specifica-

tion, and Verification, Lecture Notes in Computer Science, vol.

2844, pp. 391–401. Springer Berlin / Heidelberg (2003)

61. Stephanidis, C., Savidis, A.: Universal access in the information

society: Methods, tools, and interaction technologies. Universal

Access in the Information Society 1(1), 40–55 (2001)

62. Sun Microsystems: GNOME 2.0 desktop: Developing with the ac-

cessibility framework. Tech. rep., Sun Microsystems (2003)

63. Theofanos, M.F., Redish, J.G.: Bridging the gap: between acces-

sibility and usability. interactions 10(6), 36–51 (2003)

64. Trewin, S., Zimmermann, G., Vanderheiden, G.: Abstract user in-

terface representations: how well do they support universal ac-

cess? In: Proceedings of the 2003 conference on Universal us-

ability, CUU ’03, pp. 77–84. ACM (2003)

65. Trewin, S., Zimmermann, G., Vanderheiden, G.: Abstract repre-

sentations as a basis for usable user interfaces. Interacting with

Computers 16(3), 477–506 (2004)

66. Vanderdonckt, J., Limbourg, Q., Michotte, B., Bouillon, L., Tre-

visan, D., Florins, M.: UsiXML: a user interface description lan-

guage for specifying multimodal user interfaces. In: WMI ’04:

Proceedings of the W3C Workshop on Multimodal Interaction

(2004)

67. Weber, G.: Programming for usability in nonvisual user interfaces.

In: Proceedings of the third international ACM conference on As-

sistive technologies, Assets ’98, pp. 46–48. ACM (1998)

Equivalent representations of multi-modal user interfaces 29

68. Weber, G., Mager, R.: Non-visual user interfaces for X Windows.

In: Proceedings of the 5th international conference on Computers

helping people with special needs. Part II, pp. 459–468. R. Olden-

bourg Verlag GmbH (1996)

69. Weber, G., Petrie, H., Kochanek, D., Morley, S.: Training blind

people in the use of graphical user interfaces. In: W. Zagler,

G. Busby, R. Wagner (eds.) Computers for Handicapped Persons,

Lecture Notes in Computer Science, vol. 860, pp. 25–31. Springer

Berlin / Heidelberg (1994)

