
Access by Contract:
The New Way to Make
Technology Accessible

Peter Korn
Accessibility Architect
Sun Microsystems, Inc.

Agenda
• A brief history: Accessibility from 1960 to today
• Sun's philosophy & approach to accessibility
• How things work today in Windows:

> A case study of JAWS with MS-Office
• How things work today in UNIX (and perhaps

tomorrow in Windows)
> Well defined, rich protocols expose application & content

information explicitly (“engineered accessibility”)

1st Generation Accessibility:
late 1960s, 1970s, early 1980s

● Blind access with speech,
Optacon

● Low vision access
via special hardware

● Early Braille printers

● Talking calculators

1st Generation Limitations

• Options expensive, difficult to use (such as
Optacon)

• Computing limits restricted what users could do –
only job access; no Web, no on-line books

• Very few disabilities served
> No augmentative communication devices
> Poor options for physical impairments
> No voice recognition
> Nothing for cognitive impairments

2nd Generation Accessibility:
late 1980s, 1990s, early 2000s

● Software TTS, access to
the GUI, scripting

● Software mag

● Voice recognition, OCR,
Aug Comm

● WYNN, TextHelp, other
LD products

2nd Generation Limitations

• Patching of OS display drivers, keyboard driver
means solutions are brittle: must update every OS
release

• Special case work for applications – results in brittle
solution: must update ever app update

• Many apps bypass patching mechanisms, so are
inaccessible or need lots of special work:
> HyperCard, DirectX, X Servers, Terminal Server

Note: Section 508 developed in this environment

3rd Generation Accessibility:
1997 and onward

• Access by Contract:
“Engineered
Accessibility”

• Every UI element
implements it

• Everything needed
by all AT provided

• Rich, extensible,
flexible, powerful

3rd Generation Accessibility:
How it came to be; why needed

• HyperCard, Macintosh X Servers → Access Aware
• Web Accessibility → WCAG, UAAG, ATAG
• Microsoft Office → MSAA
• Java via Direct X & own text rendering → JA-API
• UNIX & X → GNOME Accessibility API
• Macintosh OS X → Apple Accessibility API

Sun's Approach to 3rd Generation:
Sun Accessibility effort, goals
• Ensure that all Sun products and technologies

are accessible to people with disabilities
• Make it very easy to build accessible products

on top of Sun technologies

“Accessibility is about enabling people with
disabilities to participate in substantial life
 activities that include work and the use of

services, products, and information.”

First big theme:
Built-in vs. Bolt-on

• Working with mature platforms means
accessibility comes late to the table, is never
really part of the underlying design

• Working with young platforms means making a
gamble - will the platform be important enough in
the future?

Second big theme:
Evolution of screen access
• First generation - access to TTY systems [primitive]

> Magnification as a special video card
> Access to text in the video buffer (C/PM and DOS access)

• Second generation - access to the GUI [brittle]
> Video buffer re-direction & re-rendering for magnification
> Off-Screen Model for screen reading
> Patches in the OS for on-screen keyboard, other access
> App-specific customization in speech recognition & control

• Third generation - access via an API [flexible, rich]
> Magnification still needs video buffer re-direction
> Screen reading direct to the API
> On-Screen keyboard can be much more dynamic
> Products for cognitive impairment can be system-wide

Third big theme: Formal division of
responsibility
• First & second gen., AT had to do everything

> Get the text, determine context (from buffer or OSM)
> Magnify the text
> Special-case applications (MS-Office, Internet Explorer)
> Create specialized drivers for specialized hardware

• The climate has changed
> Greater awareness of people with disabilities
> Laws worldwide requiring accessibility

• Proposal: divide the work into three pieces:
> Platform: define, implement accessibility architecture
> Application: support the platform accessibility arch.
> AT: focus on the user experience

Fourth big theme:
Open source accessibility
• All source code available for examine

• AT developers can fix their own bugs, release their
own patches

• AT may be open source too

• Vendors and users can control their own destiny

Problems People Face
• Assistive Technology price per machine

> Screen reader (JAWS): $900-$1,300
> Screen magnifier (ZoomText): $600
> Other AT products: variety of prices

• Deployment
> Dedicate a system to a use; expensive and

wasteful in computer labs
> Systems with AT very brittle – don't let non-

disabled touch them!
• Assistive Technology upgrades expensive,

frequent

Open Source Accessibility Benefits

• Built in: a great price!
• Supported architecture for accessibility; things

no longer brittle
• Huge collection of apps which support the

architecture, interoperate on the desktop
• AT from the same vendor as desktop apps

(StarOffice, Mozilla, Evolution, etc.) - single
source for assistance

Open Source Community
Engagement makes this Work!
• GNOME

> Project began with a public meeting that was
webcast (and real-time close captioned)

> “Universal Accessibility” core GNOME value

• OpenOffice.org
> Design & implementation public, two-way

• Mozilla
> Sun engineers continued work started by

Netscape; working in concert with IBM

Helen Keller Achievement Award

Sun/GNOME Accessibility
Architecture Adoption
• Core part of GNOME platform
• KDE/Qt to adopt it in version 4.0
• Adobe Reader 7 for Linux supports it
• Free Standards Group Accessibility Working

Group to base accessibility standard around this
architecture (members include Sun, IBM, and
Adobe)
> see http://www.a11y.org

http://www.a11y.org/

FOSS/UNIX Accessibility Timeline

AccessX moves into X on SunOS, DEC UNIX

Built javax.accessibility.* in Swing

1994

Section 508 amendment signed into law

Solaris 10 ships with accessibility support, AT

Ubuntu Linux 6.10 ships with accessibility, AT

2001

1997-8
1998

Section 508 amendment regulations go into
effect

2000 Began GNOME, StarOffice, Mozilla accessibility

2006

2005

GNOME 2.4 developer release with AT included2003
Free Standards Group Accessibility workgroup starts

AT in Windows

AT with StarOffice in Windows

AT with StarOffice in UNIX

How the architecture works

• In-process definition and implementation of
Accessibility API

• Use CORBA for IPC to AT
• Have a small piece for discovery, window

mgr./desktop stuff

A closer look at the API
• Accessible object

> Name, Description, Role, States
> Parent, Children, location in Parent
> Relations to other Accessible objects

• Set of Accessible sub-interfaces:
> Component: visual/rendered information
> Action: Manipulate objects (“click”, “PgUp”)
> Selection: add/remove objects from a selection
> Text, EditableText, HyperText: rich text interfaces
> Table: 2D array of children, (x,y) access
> Image: get icon embedded witin an object
> Streamable: future

API example in Java

DEMO

at-poke

engineered accessibility, or
“Access by Contract”

Implications
• No off-screen model for screen reading
• Dynamic voice recognition grammars
• Automated testing of user interfaces
• Clean path to Web 2.0 / Rich Web Applications

via WAI-ARIA
• Ability to develop desktop-wide LD apps like

WYNN and TextHelp

Access by Contract:
The New Way to Make
Technology Accessible

Peter Korn
peter.korn@sun.com

